Gantry Application

[System Configuration]

Motion CPU: Q172DSCPUServo Amplifier: MR-J4W2-BLinear Servo Motor: LM-H3PLC CPU: Q06UDEHCPUGOT: GT16**-VRotary Servo Motor: HG-KRMain Base Unit: Q35DBOutput Module: QY40PProgramming Software: MELSOFT MT Works2 (Motion), MELSOFT GX Works2 (PLC), MELSOFT GT Works3 (GOT)Motion CPU operating system software: SW8DNC-SV22QL

[Operation description]

The provided sample program controls the X-Axis tandem movement, Y-Axis multi-head movement, and the Z-Axis nozzle positioning (in a dispenser machine based example) demonstrating the gantry application.

[Control points]

- Point1: Highly accurate and responsive positioning is carried out through direct translation of positioning commands to the machine via usage of linear servo motors on the X and Y-Axis, eliminating of backlash in a gearing system.
- Point2: Simple machine design is achieved through a multi-head configuration (Y-Axis) of two motors moving simultaneously on the same single stator coil.
- Point3: The X-Axis tandem movements and the Command Generation Axis based interpolation operations are implemented through the high performance "Advanced Synchronous Control" function. Also, synchronous interpolation through the multi-head configuration can also be achieved easily.

[Operation Flowchart]

The machine moves to the dispensing operation start position with the GOT start switch, completes 3 perfect circular movements (Z-Axis) and then returns to the wait position.

[GOT Sample screen]

(Note): Sample screen as default are set for English environment. When using Japanese environment, it's possible to switch to Japanese for GOT monitoring data in GT Designer 3 Language change the preview column from [2] to [1].

[System Setting]

[Servo Data Setting]

[Parameter Block]

Item	Block No. 1	Block No.2
Parameter Block	Set the data such as th	e acceleration/decelera
Interpolation Control Unit	0:mm	0:mm
Speed Limit Value	120000.00[mm/min]	15000.00[mm/min]
Acceleration Time	100[ms]	100[ms]
Deceleration Time	100[ms]	100[ms]
Rapid Stop Deceleration Time	100[ms]	100[ms]
S-curve Ratio	0[%]	0[%]
Torque Limit Value	300[%]	300[%]
Deceleration Process on STOP	0:Deceleration Stop	0:Deceleration Stop
Allowable Error Range for Circular Interpolation	10.0[µm]	10.0[µm]
Bias Speed at Start	0.00[mm/min]	0.00[mm/min]
Acceleration/Deceleration System	0:Trapezoid/S-curve	0:Trapezoid/S-curve
Advanced S-curve Acceleration/Decelerat	Set the data of advanc smoothly.	ed S-curve acceleration,

Block No.1: Usage for X-Axis, Y-Axis Block No.2: Usage for Z-Axis

[Servo Parameter]

Parameter setting example using Linear servo motors for conducting tandem operation.

(1) Linear Control – Basic Settings

(2) Linear Control - Extension Settings

	-		(X1-axis), follow the directions below for corresponding axis.
Linear control - Extension Magnetic pole detection Linear servo motor ma The first time servo O	n Selecte h(**LIT1, *LIT3, LTSTS, IDLV, LPWM) gnetic pole detection selection N Magnetic pole detection	ILIN Se Po	 [Magnetic Pole Detection (MPD) & Home Position Return (HPR) Guide] 1) Set X1-Axis to Servo ON state, and conduct the MPD. (Have X2-Axis in the Servo OFF state) 2) Set X1-Axis to Servo OFF, set X2-Axis to Servo ON, and conduct the MPD. 3) Set X1-Axis to Servo ON, and set X2-Axis to Servo OFF. 4) Have X1-Axis complete the Home Position Return (DOG. Scale Type, etc.) 5) Set X1 Axis to Servo OFF.
Method selection	Minimal pos. detection meth. 💌	, e	6) Have X2-Axis to Servo OFF, and set X2-Axis to Servo ON. 6) Have X2-Axis complete the Home Position Return (Data Set Type, etc.)
Response selection Load mass ratio sel. Identity signal amplitu	0 V 10 times or less V ide	Co	 (Note): Different from an ABS encoder, when using a linear INC encoder, whenever the power is turned ON, the magnetic pole detection must be conducted. Therefore, we recommend the use of an ABS encoder.
Stroke limit selection	0 % (0-100)	Re	set disabled (reset by power cycle)
Voltage level	30 % (0-100)		
For the MPD me	ethod corresponding to the tan	nde	em axis (X-axis), we
For the MPD me recommend to us	ethod corresponding to the tan se the "Minimal Pos. Detection I	nde Me	em axis (X-axis), we eth

In order to perform the magnetic pole detection for the tandem operation axis

(3) Servo adjustments - Basic Settings

[Synchronous Control Parameters]

(1) Input Axis Parameters

Item	Axis 1	Axis 2
Command Generation Axis		
Valid Setting	1:Valid 🔹	1:Valid
Unit Setting	0:mm	0:mm
Upper Stroke Limit	214748364.7 µm	214748364.7 µm
Lower Stroke Limit	-214748364.8 µm	-214748364.8 µm
Command In-position Range	10.0 µm	10.0 µm
Sp. Ctrl. 10x Mult. for Deg.	-	-
Length per Cycle	0.0 µm	0.0 µm
JOG Speed Limit Value	120000.00 mm/min	120000.00 mm/min
JOG Operation Parameter Block Setting	1	1
Acceleration/deceleration Time	Set acceleration/dec	eleration time at spe

(2) Synchronous Parameters

[Devices used in this program]

Device No.	Content	Device No.	Content
B0	Dispensing operation start (GOT)	W0	X-Axis JOG speed setting (GOT):
B1	Home position return (GOT)	W1	x 0.01 [mm/sec]
B2	Error Reset (GOT)	W2	V Axis IOC speed setting (COT):
B5	Home position return complete lamp (GOT)	W3	x 0.01[mm/sec]
B6	Error lamp (GOT)	W4	7 Axis IOC apood potting (COT):
B7	Tandem Axis(X-Axis) AX 1, 2 Position Deviation Excessive	W5	x 0.01[mm/sec]
B8	Multi-head Axis(Y-Axis) AX 3, 4 Position Collision	PY10	Discharge valve 1 (Y1-Axis side)
B11	X-Axis JOG forward (GOT)	PY11	Discharge valve 2 (Y2-Axis side)
B12	X-Axis JOG reverse (GOT)		
B13	Y1-Axis JOG forward (GOT)		
B14	Y1-Axis JOG reverse (GOT)		
B15	Y2-Axis JOG forward (GOT)		
B16	Y2-Axis JOG reverse (GOT)		
B17	Z1-Axis JOG upward (GOT)		
B18	Z1-Axis JOG downward (GOT)		
B19	Z2-Axis JOG upward (GOT)		
B1A	Z2-Axis JOG downward (GOT)		

ACautions

- When diverting the sample program to the actual system, be sure to verify that there are no problems with control in the system.

- Add interlock conditions in the target system where considered necessary.

[Content of Motion SFC sample programs]

Program Structure

No.	Program Name	Automatic Start	Execution Task	Operation Summary
0	Main	Yes	Normal	Main Operation
1	Motion control	Yes	Normal	Motion Control
2	Home Position	No	Normal	Home Position Return
3	JOG operation	No	Normal	JOG Operation
4	Dispensing	No	Normal	Dispensing Operation

⁽¹⁾ No.0 Main: Main Operation Normal Task [Automatic Start]

This program continuously runs certain processes and initiates starting settings.

(2) No.1 Motion control: Normal Task [Automatic Start]

Each Motion control task is initiated when started from the GOT screen.

[F 8] SETM2042 //All axes servo ON P0	All Axis Servo ON Request Flag ON	<got> B0 : Dispensing Start B1 : HPR Start B11 to B1A : JOG</got>
[G 5] //Servo ON status status check M2415*M2435*M2455*M2475*M2495*M2515	All Axes Servo ON Status Check JOG Operation Start	Dispensing Start
osition Return Start	······································	
[G 0] B1//Reset System	[G 1] //JOG Start B11+B12+B13+B14+B15+B16+B17+B18+B19+B1A	[G 2] B0//Dispensing operation Start
Home Position	JOG operation	Dispensing
[G 3] ///Home Position Return Completion RSTB1=B1 !B1	[G 7] ///JOG Completion NOP	[G 11] //Dispensing Completion RSTB0=B0 !B0

(3) No.2 Home position: Home Position Return Normal Task

This program activates the home position return servo program for all axes.

(4) No.3 JOG operation: Normal Task

Executes the JOG operation for each axis

[FS 2]	
<pre>////////JOG Operation/////// //Ax.1,2_X D14680L=W0L*60L//Ax.1,2_JOG speed OUTM10962=B11//Ax.1,2_JOG forward OUTM10963=B12//Ax.1,2_JOG reverse //Ax.3_Y1 D644L=W2L*80L//Ax.3_JOG speed OUTM3242=B13//Ax.3_JOG forward OUTM3243=B14//Ax.3_JOG reverse //Ax.4_Y2 D646L=W2L*860L//Ax.4_JOG speed OUTM3263=B16//Ax.4_JOG reverse //Ax.5_Z1 D648L=W4L*80L//Ax.5_JOG speed OUTM3282=B17//Ax.5_JOG forward OUTM3283=B18//Ax.3_JOG reverse //Ax.6_Z2 D650L=W4L*360L//Ax.6_JOG speed OUTM3303=B1A//Ax.6_JOG reverse</pre>	When GOT JOG switch is ON, corresponding JOG command bit will turn ON. <got> B11: X-Axis JOG forward B12: X-Axis JOG reverse B13: Y1-Axis JOG forward B14: Y1-Axis JOG forward B15: Y2-Axis JOG forward B16: Y2-Axis JOG forward B18: Z1-Axis JOG downward B19: Z2-Axis JOG upward B1A: Z2-Axis JOG upward</got>
[G 4] ///JOG Complete !M9810*!M2003*!M2004*!M2005*!M2006 [G 9] //Ax.1,2 Synchronous control OFF RSTM12000 RSTM12001 !M10880*!M10881	X-Axis (Axis 1, 2) Synchronous Control End

(5) No.4 Dispensing: Dispensing Operation Normal Task

After positioning to the dispensing start point, the dispensing operation follows a trace pattern that is based on the command generation axis's controlled circular/linear interpolation.

