Gantry Application

[System Configuration]

[Mitsubishi solution]

Motion CPU: Q172DSCPU
PLC CPU: Q06UDEHCPU
Main Base Unit: Q35DB

Servo Amplifier: MR-J4W2-B
Linear Servo Motor: LM-H3
Rotary Servo Motor: HG-KR

Programming Software: MELSOFT MT Works2 (Motion), MELSOFT GX Works2 (PLC), MELSOFT GT Works3 (GOT) Motion CPU operating system software: SW8DNC-SV22QL

[Operation description]

The provided sample program controls the X-Axis tandem movement, Y-Axis multi-head movement, and the Z-Axis nozzle positioning (in a dispenser machine based example) demonstrating the gantry application.

[Control points]

Point1: Highly accurate and responsive positioning is carried out through direct translation of positioning commands to the machine via usage of linear servo motors on the X and Y-Axis, eliminating of backlash in a gearing system.
Point2: Simple machine design is achieved through a multi-head configuration (Y-Axis) of two motors moving simultaneously on the same single stator coil.
Point3: The X-Axis tandem movements and the Command Generation Axis based interpolation operations are implemented through the high performance "Advanced Synchronous Control" function. Also, synchronous interpolation through the multi-head configuration can also be achieved easily.

[Operation Flowchart]

The machine moves to the dispensing operation start position with the GOT start switch, completes 3 perfect circular movements (Z-Axis) and then returns to the wait position.

[GOT Sample screen]
[GOT Home screen]

(Note): Sample screen as default are set for English environment. When using Japanese environment, it's possible to switch to Japanese for GOT monitoring data in GT Designer 3 Language change the preview column from [2] to [1].
[System Setting]

[Servo Data Setting]

[Parameter Block]

[Servo Parameter]

Parameter setting example using Linear servo motors for conducting tandem operation.

(1) Linear Control - Basic Settings

(2) Linear Control - Extension Settings

In order to perform the magnetic pole detection for the tandem operation axis (X1-axis), follow the directions below for corresponding axis.

[Magnetic Pole Detection (MPD) \& Home Position Return (HPR) Guide]

1) Set X1-Axis to Servo ON state, and conduct the MPD. (Have X2-Axis in the Servo OFF state)
2) Set X1-Axis to Servo OFF, set X2-Axis to Servo ON, and conduct the MPD.
3) Set X1-Axis to Servo ON, and set X2-Axis to Servo OFF.
4) Have X1-Axis complete the Home Position Return (DOG. Scale Type, etc.)
5) Set X1-Axis to Servo OFF, and set X2-Axis to Servo ON.
6) Have X2-Axis complete the Home Position Return (Data Set Type, etc.)
7) Set X1-Axis to Servo ON.
(Note): Different from an ABS encoder, when using a linear INC encoder, whenever the power is turned ON, the magnetic pole detection must be conducted. Therefore, we recommend the use of an ABS encoder.

For the MPD method corresponding to the tandem axis (X-axis), we recommend to use the "Minimal Pos. Detection Meth".
(3) Servo adjustments - Basic Settings

Servo adjustments - Basic			Selected Items Write	Single Axis Write	$\underline{\text { Update Project }}$		
Auto tuning(ATU, RSP) Gain adjustment mode selection			Servo control gain				
			Load mass ratio	7.00	times (0.00-300.00)		
2-gain adj. mode 2			Model loop gain	15.0	$\mathrm{rad} / \mathrm{s}(1.0-2000.0)$	X-Axis to create same primary	
2-gain adj. mode 1 (Interpolation) A Auto tuning mode 1 Auto tuning mode 2 Manual mode 2-gain adj. mode 2						side delay based on the	
			Position loop gain	37.0	$\mathrm{rad} / \mathrm{s}(1.0-2000.0)$	command value. Set the "Gain	
			Speed loop gain	823	$\mathrm{rad} / \mathrm{s}(20-655$	"Adjustment Mode Selection" to	
					"2-gain adj. mode 2" or "Manual		
Overshoot amount compensation		\% (0-100)		Spd. integral compen	n. $\quad 33.7$	ms (0.1-1000.0)	Mode". Make sure the model loop gain setting of X1-Axis
			Spd. diff. compen.	980	(0-1000)	and X 2 -Axis are the same.	

[Synchronous Control Parameters]

(1) Input Axis Parameters

(2) Synchronous Parameters

[Devices used in this program]

Device No.	Content	Device No.	Content
B0	Dispensing operation start (GOT)	W0	X-Axis JOG speed setting (GOT): x 0.01 [mm/sec]
B1	Home position return (GOT)	W1	W2
B2	Error Reset (GOT)	Y-Axis JOG speed setting (GOT): x 0.01[mm/sec]	
B5	Home position return complete lamp (GOT)	W3	W4
B6	Error lamp (GOT)	Z-Axis JOG speed setting (GOT): x 0.01[mm/sec]	
B7	Tandem Axis(XAxis) AX 1, 2 Position Deviation Excessive	W5	PY10
B8	Multi-head Axis(Y-Axis) AX 3, 4 Position Collision	Discharge valve 1 (Y1-Axis side)	
B11	X-Axis JOG forward (GOT)	PY11	Discharge valve 2 (Y2-Axis side)
B12	X-Axis JOG reverse (GOT)		
B13	Y1-Axis JOG forward (GOT)		
B14	Y1-Axis JOG reverse (GOT)		
B15	Y2-Axis JOG forward (GOT)		
B16	Y2-Axis JOG reverse (GOT)		
B17	Z1-Axis JOG upward (GOT)		
B18	Z1-Axis JOG downward (GOT)		
B19	Z-Axis JOG upward (GOT)		
B1A	Z2-Axis JOG downward (GOT)		

© Cautions

- When diverting the sample program to the actual system, be sure to verify that there are no problems with control in the system.
- Add interlock conditions in the target system where considered necessary.
[Content of Motion SFC sample programs]

Program Structure

No.	Program Name	Automatic Start	Execution Task	Operation Summary
0	Main	Yes	Normal	Main Operation
1	Motion control	Yes	Normal	Motion Control
2	Home Position	No	Normal	Home Position Return
3	JOG operation	No	Normal	JOG Operation
4	Dispensing	No	Normal	Dispensing Operation

(1) No. 0 Main: Main Operation Normal Task [Automatic Start]

This program continuously runs certain processes and initiates starting settings.

(2) No. 1 Motion control: Normal Task [Automatic Start]

Each Motion control task is initiated when started from the GOT screen.

<GOT>	
B0	: Dispensing Start
B1	: HPR Start
B11 to B1A	: JOG

(3) No. 2 Home position: Home Position Return Normal Task

This program activates the home position return servo program for all axes.

1

(4) No. 3 JOG operation: Normal Task

Executes the JOG operation for each axis

[FS 2]
///////////JOG Operation///////////
//Ax.1,2 X
D14680L= $=0 \mathrm{~L} * 60 \mathrm{~L} / / \mathrm{Ax} .1,2 \mathrm{~J} 0 \mathrm{G}$ speed
OUTM10962 $=$ B11//Ax.1,2 JOG forward OUTM10963=B12//Ax.1,2 JOG reverse
//Ax. 3 Y 1
D644L=W2L*60L//Ax. 3 JOG speed
OUTM3242=B13//Ax. 3 JOG forward
OUTM3243=B14//Ax. 3 JOG reverse
//Ax. 4 Y2
D646L=W2L*360L//Ax. 4 J0G speed
OUT M3262=B15//Ax. 4 JOG forward
OUTM3263=B16//Ax. 4 JOG reverse
//Ax. 5 _ 21
D648L=W4L*60L//Ax. 5 JOG speed
OUT M3282=B17//Ax. 5 JOG forward
OUT M3283=B18//AX. 3 JOG reverse
//Ax. 6 _Z2
D650L=W4L*360L//Ax. 6 JOG speed
OUT M3302=B19//Ax. 6 J0G forward
$00 T \mathrm{M} 3303=\mathrm{B} 1 \mathrm{~A} / / \mathrm{Ax} .6$ JuG reverse
$\left[\begin{array}{ll}G & 4\end{array}\right]$
///JJOG Complete
! $\mathrm{m} 9810 *$! $\mathrm{M} 2003 *!\mathrm{H} 2004$! ! $\mathrm{M} 2005 *$! M 2006

```
[G6
//Ax.1,2 Synchronous contral OFF
RSTM12000
RSTM12001
!M10880*!M10881
```

X-Axis (Axis 1, 2) Synchronous Control Start

When GOT JOG switch is ON, corresponding JOG command bit will turn ON.
<GOT>
B11: X-Axis JOG forward
B12: X-Axis JOG reverse
B13: Y1-Axis JOG forward
B14: Y1-Axis JOG reverse
B15: Y2-Axis JOG forward
B16: Y2-Axis JOG reverse B17: Z1-Axis JOG downward B18: Z1-Axis JOG upward B19: Z2-Axis JOG downward B1A: Z2-Axis JOG upward

X-Axis (Axis 1, 2) Synchronous Control End

WOL: X-Axis JOG Speed Setting
W2L: Y-Axis JOG Speed Setting
W4L: Z-Axis JOG Speed Setting
(5) No. 4 Dispensing: Dispensing Operation Normal Task

After positioning to the dispensing start point, the dispensing operation follows a trace pattern that is based on the command generation axis's controlled circular/linear interpolation.

