概要

2018年4月から4機体制で運用開始される漼天頂衛星（QZS）の測位補強信号を用いて，走行レーン上の自動車の位葍を推測する低価格な高精度測位ユニットです。

特長

当社は，GPSを用いた世界初のカーナビゲージョンを1990年に製品化し，更に準天頂衛星（QZS）開発の利点を活かし，いち早く測位補強信号とGNSSの低価格な複合受信機を内蔵した高精度ロケータを提供します。

1 測位機能

- CLAS補強RTK－PPP／SBAS補強2周波PPP
- 6䡛IMUによる3次元自律航法，GNSSとの複合測位

車載カメラと高精度地図による走行レーン特定，白線相対泪位
－位管更新周期 10 Hz ，位置予測誤差出力

2 ADAS幾能

レーンレベルの道路データ生成
－レーンレベル推奨レーン作成
高精度地図データコンテンツの出力

3 高精度地図

- カーナビゲーション用道路データ
- レーンレベルの車線データ（全国の高逻道路）
- 地図更新機能あり

4 主な用途

－予防安全，準自動運転（レベル3），カーナビゲーション

高精度ロヶータの外観イメージ図

＜H／W概要＞
車載用2周波GNSS受信機
CLAS補強信号復号チップ
6軸IMU（3軸Gyro／3軸加速度センサから構成）
高精度地図用SDカード
CAN／USB／Ethernet（カメラ連携，通信連携，ナビ連携）
［用語］
LAS ：Centimeter Level Augmentation Service
BAS ：Statelite－Based Augmentation Systems
RTK ：Real Time Kinematic
Ppp ：Precise Point Positioning
MU ：Inertial Measurement Unit

いつでも，どこでも，安価に高精度を実現する測位ユニットの開発を進めています。

測量技術／高精度地図整備
MMS（モービルマッピングシステム）により誤差数 10 cm 以下の精度でレーン每の道路形状をデータ化

SBAS：Statelite－Based Augmentation Systems IMU：Inertial Measurement Unit

高精度な地図と位惪情報により，準自動運転及び運転支援㙨能の精度向上を実現

高精度ロケータ	
高精度自車位置算出 高精度地図コンテンツ	
前頁の技術により高精度な自車位置を算出	高精度な道路形状データだけでなく，制限速度，一時停止線，踏切（停止位置），信号機•道路標識の位置（3D座標）も格納
レーンレベルの道路データ生成	
高精度地図データより，レーンの中心線の位置をX，Y，Zの3軸の空間座標点列で表現することにより，道路をより精度を上げて表現	
ナビで使用する通常地図	ノードの絶対座標は数m～十数mの誤差
高精度地図	ノードの絶対座標はサブmの誤差で， レーン毎の道路データを地図データに格納
	（2）レーンデータ及び水平方向， （3）垂直方向の曲率から道路点列を計算で算出

