Information for Replacement of Speed Controller SC-A Series to FR-D700

Size, connection, and parameters concerning replacement are stated on the following pages.

1. Size

Installation sizes of the speed controller SC-A series and the corresponding FR-D700 series are different. For details of the sizes, refer to the outline dimension drawings on the following pages.

Power supply voltage		Existing controller	Replacing inverter	Installation size
Three phase 200V	Boxtype	SC-A2040B	FR-D720-0.1K	Different size
		SC-A2100B	FR-D720-0.1K	Different size
		SC-A2200B	FR-D720-0.2K	Different size
		SC-A2400B	FR-D720-0.4K	Different size
	Unit type	SC-A2040U	FR-D720-0.1K	Different size
		SC-A2100U	FR-D720-0.1K	Different size
		SC-A2200U	FR-D720-0.2K	Different size
		SC-A2400U	FR-D720-0.4K	Different size
	Panel surface installation type	SC-AN2100-07	FR-D720-0.1K	Different size
	Module type	SC-A2040M	FR-D720-0.1K	Different size
		SC-A2100M	FR-D720-0.1K	Different size
		SC-A2200M	FR-D720-0.2K	Different size
		SC-A2400M	FR-D720-0.4K	Different size
Single phase 100V	Box type	SCA-1040B	FR-D710W-0.1K	Different size
		SCA-1100B	FR-D710W-0.1K	Different size
	Unit type	SCA-1040U	FR-D710W-0.1K	Different size
		SCA-1100U	FR-D710W-0.1K	Different size
	Panel surface installation type	SCA-N1100-07	FR-D710W-0.1K	Different size
	Module type	SCA-1040M	FR-D710W-0.1K	Different size
		SCA-1100M	FR-D710W-0.1K	Different size

If the three-phase 200 V speed controller SC-A series is currently used for single phase input, replace the controller with the single-phase 200V FR-D720S series. Installation sizes are different.
For details of the sizes, refer to the outline dimension drawings on the following pages.

Power supply voltage		Existing controller	Replacing inverter	Installation size
$\left.\begin{array}{\|l\|} \hline \text { Three phase } \\ 200 \mathrm{~V} \\ \left(\begin{array}{l} \text { Single-phase } \\ \text { connection } \end{array}\right. \end{array}\right)$	Box type	SC-A2040B	FR-D720S-0.1K	Different size
		SC-A2100B	FR-D720S-0.1K	Different size
		SC-A2200B	FR-D720S-0.2K	Different size
		SC-A2400B	FR-D720S-0.4K	Different size
	Unit type	SC-A2040U	FR-D720S-0.1K	Different size
		SC-A2100U	FR-D720S-0.1K	Different size
		SC-A2200U	FR-D720S-0.2K	Different size
		SC-A2400U	FR-D720S-0.4K	Different size
	Panel surface installation type	SC-AN2100-07	FR-D720S-0.1K	Different size
	Module type	SC-A2040M	FR-D720S-0.1K	Different size
		SC-A2100M	FR-D720S-0.1K	Different size
		SC-A2200M	FR-D720S-0.2K	Different size
		SC-A2400M	FR-D720S-0.4K	Different size

[^0]Outline dimension drawings (Unit: mm)

- Box type

SC-A2040B to A2400B
SC-A1040B to A1100B

Speed Controller Model	D
SC-A2040B/A2100B SC-A1040B/A1100B	80
SC-A2200B	90
SC-A2400B	115

- Unit type

SC-A2040U to A2400U
SC-A1040U to A1100U

Speed Controller Model	D
SC-A2040U/A2100U SC-A1040U/A1100U	84
SC-A2200U	94
SC-A2400U	119

- FR-D720-0.1K to 0.4 K

FR-D720S-0.1K to 0.4 K
FR-D710W-0.1K

Inverter Model	D	D 1
FR-D720-0.1K/0.2K FR-D720S-0.1K/0.2K FR-D710W-0.1K	80.5	10
FR-D720-0.4K	112.5	42
FR-D720S-0.4K	142.5	42

- Panel surface installation type

SC-AN2100-07
SC-AN1100-07

Panel cut drawing

- Module type

SC-A2040M to A2200M
SC-A1040M to A1100M

Speed Controller Model	D
SC-A2040M/A2100M SC-A1040M/A1100M	68
SC-A2200M	78
SC-A2400M	103

■ FR-D720-0.1K to 0.4 K
FR-D720S-0.1K to 0.4 K
FR-D710W-0.1K

Inverter Model	D	D 1
FR-D720-0.1K/0.2K FR-D720S-0.1K/0.2K FR-D710W-0.1K	80.5	10
FR-D720-0.4K	112.5	42
FR-D720S-0.4K	142.5	42

2. Connection

The terminal names are basically the same. Connect the terminals according to their names.
For the terminal sizes, refer to page 6 to page 9 .

Type		Speed controller terminal name		FR-D700 terminal name	Remarks
		R, S, T		R/L1, S/L2, T/L3	FR-D720S (single phase specification) does not have terminal T/L3.
		U, V, W		U, V, W	
		$\stackrel{1}{\square}$		\oplus	
	Contact *1	Unit type	STF	STF	
			STR	STR	
			5/SD	SD	
		Installation on the enclosure Type	EXT	STF, STR	For the SC-A panel surface installation type, a switch on the rear side is used for switching between STF and STR.
			SD	SD	
		Module type	STF	STF	
			STR	STR	
			SD	SD	
¢ $\frac{8}{0}$ $\frac{1}{4}$	Frequency Setting *2	Unit type	10	10	
			2	2	
			5/SD	5	
		Module type	10	10	
			2	2	
			5	5	
	Fault output *3	Unit type	Y1	A	Y1 and SE are open collector terminals, and A and C are relay contacts.
			SE	C	

*1 No external connection terminal is provided for the control circuit of box type SC-A
*2 No external connection terminal for frequency setting is provided for the box type SC-A type SC-ANII-07.
*3 No external output terminal is provided for the box type SC-AIB, panel installation type SC-ANII-07, and module type SC-A IDM.
[Main circuit terminals]

Voltage class	Speed controller					FR-D700*2		
	Capacity		R, S, T	U, V, W	$\hat{(})$	R/L1, S/L2, T/L3*3	U, V, W	$\stackrel{1}{\square}$
Three phase 200V	Box type SC-A[][]B	$\begin{aligned} & 40 \text { to } \\ & 400 \mathrm{~W} \end{aligned}$	M3.5	M3.5	M3	M3.5	M3.5	M3.5
	Unit type SC-A[][]U	$\begin{aligned} & 40 \text { to } \\ & 400 \mathrm{~W} \end{aligned}$	M3.5	M3.5	M3			
	Panel surface installation type SC-AN[][]-07	100W	M3	-*1	M3			
	Module type SC-A[][]M	40 to 400W	M3.5	M3.5	M3			
Single phase $100 \mathrm{~V}$	Box type SC-A[][]B	$\begin{aligned} & 40 \text { to } \\ & 100 \mathrm{~W} \end{aligned}$	M3.5	M3.5	M3	M3.5	M3.5	M3.5
	Unit type SC-A[][]U	$\begin{aligned} & 40 \text { to } \\ & 100 \mathrm{~W} \end{aligned}$	M3.5	M3.5	M3			
	Panel surface installation type SC-AN[][]-07*2	100W	M3	-*1	M3			
	Module type SC-A[][]M	$\begin{aligned} & 40 \text { to } \\ & 100 \mathrm{~W} \end{aligned}$	M3.5	M3.5	M3			

*1 Cabtyre cables with round crimping terminals are connected to U, V, and W of the panel surface installation type. Size of the crimping terminal: Nominal diameter of 0.5-4 (with sleeve)
*2 For the FR-D700, 40W capacity models are not available. 0.1 kW or higher capacity models are available for the FR-D700.
*3 Terminal T/L3 is not available for the single-phase power input model.

* The positions of main circuit terminals are different between the speed controller and the FR-D700. Details of the positions are shown below.

Terminal positions of the box type

* Input terminals are arranged on the upper part of the enclosure, and output terminals are arranged on the lower part of the enclosure.

Terminal positions of the unit type

* Input terminals are arranged on the upper part of the enclosure, and output terminals are arranged on the lower part of the enclosure.

Terminal block position of the FR-D700

The main circuit terminal block is located at TB1 position.

The positions of main circuit terminals are different from those of the speed controller.

Details of TB1

Terminal positions of the panel surface installation type

* Input terminals are arranged at the middle part of the enclosure, and output cabtyre cables with round crimping terminals are connected.

Terminal positions of the module type

Terminal block position of the FR-D700

The main circuit terminal block is located at TB1 position.

The positions of main circuit terminals are different from those of the speed controller.

Details of TB1

[Control circuit terminals]

Voltage class	Speed controller											FR-D700*2
	Capacity		10	2	5	STF	STR	SD	EXT	Y1	SE	
Three phase 200V	Box type SC-A[[]] ${ }^{\text {* } 1}$	40 to 400W	-	-	-	-	-	-	-	-	-	Spring clamp terminals
	Unit type SC-A[[]U	40 to 400W	M3.5	$\begin{gathered} \text { M3. } \\ 5 \end{gathered}$	M3.5	M3.5	M3.5	M3.5	-	M2	M2	
	Panel surface installation type SC-AN[][-07	100W	-	-	-	-	-	Plug-in terminal block		-	-	
	Module type SC-A[[]M	40 to 400w	M3	M3	M3	M3	M3	M3	-	-	-	
	Box type SC-A[[]] ${ }^{*} 1$	40 to 100W	-	-	-	-	-	-	-	-	-	
Single	Unit type SC-A[]U	40 to 100W	M3.5	$\begin{gathered} \hline \text { M3. } \\ 5 \end{gathered}$	M3.5	M3.5	M3.5	M3.5	-	M2	M2	
$\begin{aligned} & \text { phase } \\ & 100 \mathrm{~V} \end{aligned}$	Panel surface installation type SC-AN[][-07	100W	-	-	-	-	-	$\begin{aligned} & \text { Pluy } \\ & \text { term } \\ & \text { blo } \end{aligned}$		-	-	Spring clamp terminals
	Module type SC-A[[]M	40 to 100W	M3	M3	M3	M3	M3	M3	-	-	-	

*1 No control circuit terminal block is provided for the box type SC-A[][]B.
*2 For the FR-D700, 40W capacity models are not available. 0.1 kW or higher capacity models are available for the FR-D700.

For the control circuit wiring of FR-D700, strip off the sheath of a cable, and use it as a bare wire, or use it with a blade terminal shown below. Also, make sure to select applicable cable size.

Table 1. Applicable cable size for the FR-D700 control terminal block (bare wire)

Cable sheath stripping length	Applicable bare wire size
	Solid wire $\left(\mathrm{mm}^{2}\right)$

Table 2. Applicable cable size for the FR-D700 control terminal block (blade terminal)

Blade terminal model (Phoenix Contact Co., Ltd.)		Applicable bare wire size $\left(\mathrm{mm}^{2}\right)$
With insulation sleeve	Without insulation sleeve	
AI 0.5-10WH	-	0.3 to 0.5
Al 0.75-10GY	Al $0.75-10$	0.75
AI 1-10RD	A 1-10	1
Al 1.5-10BK	Al 1.5-10	$1.25,1.5$
AI-TWIN 2×0.75-GY	-	0.75 (for two wires)

Blade terminal model (NICHIFU Co., Ltd.)		Applicable bare wire size $\left(\mathrm{mm}^{2}\right)$
Blade terminal product number	Blade terminal product number	
BT $0.75-11$	Vn to 0.75	

3. Setting/adjustment

Settings and adjustments of the speed controller are performed with the internal switches and potentiometer.
Refer to the figures below for the approximate positions of the switches and potentiometer.

The following three items can be set by the speed controller.

- Maximum frequency / V/F pattern
- Acceleration/deceleration time
- Electronic thermal O/L relay

Approximate positions of the switches and potentiometer
Box type SC-A[][]B

Unit type SC-A[][]U

Approximate positions of the switches and potentiometer

Panel surface installation type SC-AN[][]-07

Module type SC-A[][]M

The FR-D700 parameter settings used to replace the speed controller settings with the switches and potentiometer are shown below.

Maximum frequency setting / V/F pattern setting: Corresponding FR-D700 parameters - Pr. 1 (Maximum frequency) and Pr. 3 (Base frequency) Refer to the following table and set the corresponding FR-D700 parameters.

Speed controller			FR-D700
Applicable model	Switch position	V/F pattern	Parameter setting
Box type SC-A[][]B Unit type SC-A[][]U Module type SC-A[][]M			$\begin{aligned} & \text { Pr.1: } 50 \mathrm{~Hz} \\ & \text { Pr.3: } 50 \mathrm{~Hz} \end{aligned}$
			$\begin{aligned} & \text { Pr.1: } 60 \mathrm{~Hz} \\ & \text { Pr.3: } 60 \mathrm{~Hz} \end{aligned}$
			$\begin{aligned} & \text { Pr.1: } 100 \mathrm{~Hz} \\ & \text { Pr.3: } 50 \mathrm{~Hz} \end{aligned}$
			$\begin{aligned} & \text { Pr.1: } 120 \mathrm{~Hz} \\ & \text { Pr.3: } 60 \mathrm{~Hz} \end{aligned}$

Maximum frequency setting / V/F pattern setting: Corresponding FR-D700 parameters - Pr. 1 (Maximum frequency) and Pr. 3 (Base frequency) Refer to the following table and set the corresponding FR-D700 parameters.

Speed controller			FR-D700
Applicable model	Switch position	V/F pattern	Parameter setting
Panel surface installation type SC-AN[][]-07			$\begin{aligned} & \text { Pr.1: } 50 \mathrm{~Hz} \\ & \text { Pr.3: } 50 \mathrm{~Hz} \end{aligned}$
			$\begin{aligned} & \text { Pr.1: } 60 \mathrm{~Hz} \\ & \text { Pr.3: } 60 \mathrm{~Hz} \end{aligned}$
OFF \square ON FWD OFF \square on rev Ext \square Manu			$\begin{aligned} & \text { Pr.1: } 100 \mathrm{~Hz} \\ & \text { Pr.3: } 50 \mathrm{~Hz} \end{aligned}$
	$\begin{array}{c\|l\|l} 60 \mathrm{~Hz} & \square & 50 \mathrm{~Hz} \\ \times 1 & \square \square & \times 2 \mathrm{FRQ} \\ & \\ \hline \end{array}$		$\begin{aligned} & \text { Pr.1: } 120 \mathrm{~Hz} \\ & \text { Pr.3: } 60 \mathrm{~Hz} \end{aligned}$

Acceleration/deceleration time setting: Corresponding FR-D700 parameters - Pr. 7 (Acceleration time) and Pr. 8 (Deceleration time)
Refer to the following table and set the corresponding FR-D700 parameters.

Speed controller		Corresponding FR-D700 parameter
Box type SC-A[][]B Unit type SC-A[][]U Panel surface installation type SC-AN[][]-07 Module type SC-A[][]M	Acceleration/deceleration time setting potentiometer position	Pr.7/Pr. 8 setting
	0	Os
	1	Os
Acceleration/deceleration time setting	2	2.5 s
potentiometer	3	5.0s
	4	7.5s
	5	10s
	6	12.5s
	7	15s
	8	17.5s
	9	20s
	10	20s

Electronic thermal O/L relay setting: Corresponding FR-D700 parameters - Pr. 9 (Electronic thermal O/L relay)
Refer to the following table and set the corresponding FR-D700 parameters.

Speed controller		Corresponding FR-D700 parameter
Box type SC-A[][]B Unit type SC-A[]]U Panel surface installation type SC-AN[][]-07 Module type SC-A[][]M	Electronic thermal O/L relay potentiometer position	Pr. 9 setting
	0	Rated motor current value $\times 50 \%$
Electronic thermal O/L relay setting potentiometer	1	Rated motor current value $\times 50 \%$
	2	Rated motor current value $\times 62.5 \%$
	3	Rated motor current value $\times 75 \%$
	4	Rated motor current value $\times 87.5 \%$
	5	Rated motor current value $\times 100 \%$
	6	Rated motor current value $\times 112.5 \%$
	7	Rated motor current value $\times 125 \%$
	8	Rated motor current value $\times 137.5 \%$
	9	Rated motor current value $\times 150 \%$
	10	Rated motor current value $\times 150 \%$

PWM frequency setting

The panel surface installation type SC-AN[][]-07 is a low noise type. If the motor noise increase by replacing the panel surface installation type with the FR-D700, adjust the Pr. 72 (PWM frequency) setting.

Parameter number	Setting range	Description
Pr. 72	0 to 15	Set the PWM carrier frequency. The setting displayed is in $[\mathrm{kHz}]$. However, 0 indicates 0.7 kHz, and 15 indicates 14.5 kHz.

4. Operation method setting

4-1. Module type / unit type

When the FR-D700 replaces a module or unit type speed controller, the existing frequency setting potentiometer and the existing start switch can be readily used.
For the re-wiring of the potentiometer and the switch, refer to the following.

■ Module type SC-A

■ Unit type SC-AㄻU control terminal connection diagram

F FR-D700 control terminal connection diagram

* FR-D700 control circuit

Set

Pr.79=0 or 1 (External operation mode).

- Forward rotation when terminal STF is ON
- Reverse rotation when terminal STR is ON
- Stopped when terminals are OFF

4-2. Box type / panel surface installation type

The operation components of the box type and the panel surface installation type, and the operation panel on the front of the FR-D700 are shown below.

* The frequency setting potentiometer and the start switch are not provided for the module type and the unit type.

Box type SC-A

Box type: Details of the operation component

Panel surface installation type SC-AN[1]-07
Panel surface installation type: Details of the operation combonent

FR-D700: Details of the inverter operation panel

4-2-1. Operation setting for replacing the box type

Set the parameters of the FR-D700 as follows to use the setting dial, the RUN key, and the STOP key on front of the FR-D700 in the same way as the frequency setting potentiometer and the start switch of the box type are used.

* To switch between the forward and reverse rotations on the FR-D700 inverter, change the Pr. 40 (RUN key rotation direction selection) setting.

Box type SC-A[][]B
When the operation is performed only in forward or reverse rotation

Set the stopper for forward rotation only, or reverse rotation only.

FR-D700

* Forward rotation only

Set

- Pr.79=1 (PU operation mode fixed)
- Pr.40=0 (RUN key rotation direction selection: Forward rotation)
- Pr.161=1 (Setting dial potentiometer mode)
* Reverse rotation only

Set

- Pr.79=1 (PU operation mode fixed)
- Pr. $40=1$ (RUN key rotation direction selection: Reverse rotation)
- Pr.161=1 (Setting dial potentiometer mode)

FR-D700: Details of the inverter operation panel

Operation of the operation panel

- Press RUN key to start (forward or reverse rotation).
- Press STOP key to stop.

To switch between the forward and reverse rotations on the FR-D700 inverter, perform either of the following operations.

1) Operation with external switches connected to terminals STF and STR
2) Operation with the connected enclosure surface operation panel (FR-PA07)

- Box type SC-A[][]

When the operation is performed both in forward and reverse rotations

- FR-D700

1) When external switches are connected to terminals STF and STR

* FR-D700 control circuit terminal block layout

Set

- Pr.79=3 (External/PU combined operation mode 1)
- Pr.161=1 (Setting dial potentiometer mode)
- Forward rotation when terminal STF is ON
- Reverse rotation when terminal STR is ON
- Stopped when terminals are OFF
- Box type SC-A[][]

When the operation is performed both in forward and reverse rotations

The speed controller has a switch to change between forward and reverse rotations

FR-D700

2) When the enclosure surface operation panel FR-PA07 is connected

Set

- Pr.79=1 (PU operation mode fixed)
- Pr.161=1 (Setting dial potentiometer mode)

FR-PA07: Details of the operation panel

Operation of the FR-PA07

- Press FWD key for the forward rotation.
- Press REV key for the reverse rotation.
- Press STOP key to stop.
* When the FR-PA07 is connected, the setting dial and the RUN key of the FR-D700 operation panel cannot be used for the operation.
* When the operation is stopped with the STOP key of the FR-D700 operation panel, the PU stop status is established.

4-2-2. Operation setting for replacing the panel surface installation type

Set the parameters of the FR-D700 as follows to use the setting dial, the RUN key, and the STOP key on front of the FR-D700 in the same way as the frequency setting potentiometer and the start switch of the panel surface installation type are used.

Refer to the following for the setting of the FR-D700 to replace the panel surface installation type used with the start switch and the frequency setting potentiometer on the speed controller.

- Panel surface installation type SC-AN[][]-07

Positions of the operation setting switches

Set the operation setting switches to decide the rotation direction when the start switch is turned ON.

2. Setting for the reverse rotation when the start switch is turned ON

FR-D700

FR-D700 parameter settings

1. SC-AN[][]-07 operation setting switch setting - FWD ON

Set

- Pr.79=1 (PU operation mode fixed)
- Pr.40=0 (RUN key rotation direction selection: Forward rotation)
- Pr.161=1 (Setting dial potentiometer mode)

Operation on the operation panel

- Press RUN key for the forward rotation.
- Press STOP key to stop.

2. SC-AN[[]-07 operation setting switch setting

- REV ON

Set

- Pr.79=1 (PU operation mode fixed)
- Pr.40=1 (RUN key rotation direction selection: Reverse rotation)
- Pr. 161=1 (Setting dial potentiometer mode)

Operation on the operation panel

- Press RUN key for the reverse rotation.
- Press STOP key to stop.

FR-D700: Details of the inverter operation panel

When the FR-D700 replaces the panel surface installation type used with the external command, the existing start switch can be readily used.
For the re-wiring of the start switch, refer to the following.

- Panel surface installation type SC-A[][]-07 control terminal connection diagram
When the external command is used

The frequency setting potentiometer is provided on the speed controller.

Positions of the setting switches

- FR-D700 control terminal connection diagram

* FR-D700 control circuit terminal block layout

Connect the external command switch as follows according to the SC-AN[][]-07 operation setting switch setting.

- FWD ON: Connect the switch to STF for the forward rotation start.
- REV ON: Connect the switch to STR for the reverse rotation start.

Set

- Pr.79=3 (External/PU combined operation mode 1)
- Pr.161=1 (Setting dial potentiometer mode)
- Forward rotation when terminal STF is ON
- Reverse rotation when terminal STR is ON
- Stopped when terminals are OFF

Reference: FR-D700 parameter list

The table below lists all the parameters displayed when Pr. 160 "Extended function display selection" = "0". O indicates simple mode parameters (displayed when Pr. $160=$ "9999").
marks the parameters that can be changed during operation even when Pr. 77 "Parameter write selection" $=$ " 0 " (initial value).
(However, the Pr. 72 and Pr. 240 settings cannot be changed during the External operation.)

Function	Pr. No.		Parameter name	Setting range	Min. unit	Initial value
Basic function	\bigcirc	0	Torque boost	0 to 30\%	0.1\%	6/4/3\% *1
	\bigcirc	1	Maximum frequency	0 to 120 Hz	0.01 Hz	120 Hz
	\bigcirc	2	Minimum frequency	0 to 120 Hz	0.01 Hz	0Hz
	\bigcirc	3	Base frequency	0 to 400 Hz	0.01 Hz	60 Hz
	O	4	Multi-speed setting (high speed)	0 to 400 Hz	0.01 Hz	60Hz
	O	5	Multi-speed setting (middle speed)	0 to 400 Hz	0.01 Hz	30 Hz
	\bigcirc	6	Multi-speed setting (low speed)	0 to 400 Hz	0.01 Hz	10Hz
	\bigcirc	7	Acceleration time	0 to 3600s	0.1 s	5/10s *2
	\bigcirc	8	Deceleration time	0 to 3600s	0.1s	5/10s *2
	O	9	Electronic thermal O/L relay	0 to 500A	0.01A	Rated output current of the inverter
DC injectionbrake		10	DC injection brake operation frequency	0 to 120 Hz	0.01 Hz	3 Hz
		11	DC injection brake operation	0 to 10s	0.1s	0.5s
		12	DC injection brake operation voltage	0 to 30\%	0.1\%	6/4\%*3
-		13	Starting frequency	0 to 60 Hz	0.01 Hz	0.5 Hz
-		14	Load pattern selection	0 to 3	1	0
JOG operation		15	Jog frequency	0 to 400 Hz	0.01 Hz	5 Hz
		16	Jog acceleration/deceleration time	0 to 3600s	0.1s	0.5s
-		17	MRS input selection	0,2,4	1	0
-		18	High speed maximum frequency	120 to 400 Hz	0.01 Hz	120 Hz
-		19	Base frequency voltage	0 to 1000V, 8888, 9999	0.1 V	9999
Acceleration/ deceleration time		20	Acceleration/deceleration reference frequency	1 to 400Hz	0.01 Hz	60 Hz
Stall prevention		22	Stall prevention operation level	0 to 200\%	0.1\%	150\%
		23	Stall prevention operation level compensation factor at double speed	0 to 200\%, 9999	0.1\%	9999
Multi-speed setting		24	Multi-speed setting (speed 4)	0 to 400 Hz , 9999	0.01 Hz	9999
		25	Multi-speed setting (speed 5)	0 to 400 Hz , 9999	0.01 Hz	9999
		26	Multi-speed setting (speed 6)	0 to 400Hz, 9999	0.01 Hz	9999
		27	Multi-speed setting (speed 7)	0 to 400 Hz , 9999	0.01 Hz	9999
-		29	Acceleration/deceleration pattern selection	0, 1, 2	1	0
-		30	Regenerative function selection	0, 1, 2	1	0
Frequency jump		31	Frequency jump 1A	0 to 400Hz, 9999	0.01 Hz	9999
		32	Frequency jump 1B	0 to 400Hz, 9999	0.01 Hz	9999
		33	Frequency jump 2A	0 to 400 Hz , 9999	0.01 Hz	9999
		34	Frequency jump 2B	0 to 400Hz, 9999	0.01 Hz	9999
		35	Frequency jump 3A	0 to 400Hz, 9999	0.01 Hz	9999
		36	Frequency jump 3B	0 to 400 Hz , 9999	0.01 Hz	9999
-		37	Speed display	0, 0.01 to 9998	0.001	0

Function	Pr. No.		Parameter name	Setting range	Min. unit	Initial value
-		40	RUN key rotation direction selection	0, 1	1	0
Frequency detection		41	Up-to-frequency sensitivity	0 to 100\%	0.1\%	10\%
		42	Output frequency detection	0 to 400 Hz	0.01 Hz	6 Hz
		43	Output frequency detection for reverse rotation	0 to 400 Hz , 9999	0.01 Hz	9999
Second function		44	Second acceleration/deceleration time	0 to 3600s	0.1s	5/10s *2
		45	Second deceleration time	0 to 3600s, 9999	0.1s	9999
		46	Second torque boost	0 to 30\%, 9999	0.1\%	9999
		47	Second V/F (base frequency)	0 to 400Hz, 9999	0.01 Hz	9999
		48	Second stall prevention operation current	0 to 200\%, 9999	0.1\%	9999
		51	Second electronic thermal O/L relay	0 to 500A, 9999	0.01A	9999
Monitor function		52	DU/PU main display data selection	$\begin{array}{\|c\|} \hline 0,5,8 \text { to } 12,14,20,23 \text { to } 25, \\ 52 \text { to } 55,61,62,64,100 \\ \hline \end{array}$	1	0
		54	FM terminal function selection	$\begin{gathered} \hline 1 \text { to } 3,5,8 \text { to } 12,14,21,24, \\ 52,53,61,62 \\ \hline \end{gathered}$	1	1
		55	Frequency monitoring reference	0 to 400 Hz	0.01 Hz	60 Hz
		56	Current monitoring reference	0 to 500A	0.01A	Rated output current of the inverter
Restart		57	Restart coasting time	0, 0.1 to $5 \mathrm{~s}, 9999$	0.1s	9999
		58	Restart cushion time	0 to 60s	0.1s	1s
-		59	Remote function selection	0, 1, 2, 3	1	0
-		60	Energy saving control selection	0, 9	1	0
-		65	Retry selection	0 to 5	1	0
-		66	Stall prevention operation reduction starting frequency	0 to 400 Hz	0.01 Hz	60 Hz
Retry		67	Number of retries at fault occurrence	0 to 10, 101 to 110	1	0
		68	Retry waiting time	0.1 to 600s	0.1 s	1s
		69	Retry count display erase	0	1	0
-		70	Special regenerative brake duty	0 to 30\%	0.1\%	0\%
-		71	Applied motor	0, 1, 3, 13, 23, 40, 43, 50, 53	1	0
-		72	PWM frequency selection	0 to 15	1	1
-		73	Analog input selection	0, 1, 10, 11	1	1
-		74	Input filter time constant	0 to 8	1	1
-		75	Reset selection/disconnected PU detection/PU stop selection	0 to 3, 14 to 17	1	14
-		77	Parameter write selection	0, 1, 2	1	0
-		78	Reverse rotation prevention selection	0, 1, 2	1	0
-	O	79	Operation mode selection	0, 1, 2, 3, 4, 6, 7	1	0
Motor constant		80	Motor capacity	0.1 to $7.5 \mathrm{~kW}, 9999$	0.01 kW	9999
		82	Motor excitation current	0 to 500A, 9999	0.01 A	9999
		83	Rated motor voltage	0 to 1000 V	0.1 V	200V/400V*5
		84	Rated motor frequency	10 to 120 Hz	0.01 Hz	60 Hz
		90	Motor constant (R1)	0 to $50 \Omega, 9999$	0.001Ω	9999
		96	Auto tuning setting/status	0, 11, 21	1	0

Function	Pr. No.	Parameter name	Setting range	Min. unit	Initial value
Output terminal function assignment	190	RUN terminal function selection	$0,1,3,4,7,8,11$ to $16,25,26$, $46,47,64,70,80,90,91,93$, $95,96,98,99,100,101,103$, 104, 107, 108, 111 to 116, $125,126,146,147,164,170$, 180, 190, 191, 193, 195, 196, 198, 199, 9999	1	0
	192	A,B,C terminal function selection	$0,1,3,4,7,8,11$ to $16,25,26$, 46, 47, 64, 70, 80, 90, 91, $95,96,98,99,100,101,103$, 104, 107, 108, 111 to 116 , 125, 126, 146, 147, 164, 170, 180, 190, 191, 195, 196, 198, 199, 9999	1	99
Multi-speed setting	232	Multi-speed setting (speed 8)	0 to 400Hz, 9999	0.01 Hz	9999
	233	Multi-speed setting (speed 9)	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999
	234	Multi-speed setting (speed 10)	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999
	235	Multi-speed setting (speed 11)	0 to 400 Hz , 9999	0.01 Hz	9999
	236	Multi-speed setting (speed 12)	0 to 400Hz, 9999	0.01 Hz	9999
	237	Multi-speed setting (speed 13)	0 to 400 Hz , 9999	0.01 Hz	9999
	238	Multi-speed setting (speed 14)	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999
	239	Multi-speed setting (speed 15)	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999
-	240	Soft-PWM operation selection	0,1	1	1
-	241	Analog input display unit switchover	0, 1	1	0
-	244	Cooling fan operation selection	0, 1	1	1
$\underset{\text { Slip }}{\text { compensation }}$	245	Rated slip	0 to 50\%, 9999	0.01\%	9999
	246	Slip compensation time constant	0.01 to 10s	0.01s	0.5s
	247	Constant-output range slip compensation selection	0,9999	1	9999
-	249	Earth (ground) fault detection at start	0, 1	1	0
-	250	Stop selection	$\begin{gathered} \hline 0 \text { to } 100 \mathrm{~s}, 1000 \text { to } 1100 \mathrm{~s}, \\ 8888,9999 \\ \hline \end{gathered}$	0.1s	9999
-	251	Output phase loss protection selection	0,1	1	1
Life diagnosis	255	Life alarm status display	(0 to 15)	1	0
	256	Inrush current limit circuit life display	(0 to 100\%)	1\%	100\%
	257	Control circuit capacitor life display	(0 to 100\%)	1\%	100\%
	258	Main circuit capacitor life display	(0 to 100\%)	1\%	100\%
	259	Main circuit capacitor life measuring	$0,1(2,3,8,9)$	1	0
-	260	PWM frequency automatic switchover	0, 1	1	0
-	260	PWM frequency automatic switchover	0, 1	1	0
Power failure stop	261	Power failure stop selection	0, 1, 2	1	0
-	267	Terminal 4 input selection	0, 1, 2	1	0
-	268	Monitor decimal digits selection	0, 1, 9999	1	9999
-	269	Parameter	for manufacturer setting. Do n		

Function	Pr. No.	Parameter name	Setting range	Min. unit	Initial value
-	295	Magnitude of frequency change setting	0, 0.01, 0.10, 1.00, 10.00	0.01	0
Password function	296	Password lock level	1 to 6, 101 to 106, 9999	1	9999
	297	Password lock/unlock	$\begin{gathered} 1000 \text { to } 9999 \text { (} 0 \text { to } 5, \\ 9999 \text {) } \end{gathered}$	1	9999
-	298	Frequency search gain	0 to 32767, 9999	1	9999
-	299	Rotation direction detection selection at restarting	0, 1,9999	1	0
RS-485 communication	338	Communication operation command source	0, 1	1	0
	339	Communication speed command source	0, 1, 2	1	0
	340	Communication startup mode selection	0,1,10	1	0
	342	Communication EEPROM write selection	0, 1	1	0
	343	Communication error count	-	1	0
Second motor constant	450	Second applied motor	0, 1,9999	1	9999
Remote Output	495	Remote output selection	0, 1, 10, 11	1	0
	496	Remote output data 1	0 to 4095	1	0
-	502	Stop mode selection at communication error	0, 1, 2	1	0
Maintenance	503	Maintenance timer	0 (1 to 9998)	1	0
	504	Maintenance timer warning output set time	0 to 9998, 9999	1	9999
Communication	549	Protocol selection	0, 1	1	0
	551	PU mode operation command source	2,4,9999	1	9999
Current average value monitor	555	Current average time	0.1 to 1s	0.1s	1s
	556	Data output mask time	0 to 20s	0.1s	0s
	557	Current average value monitor signal output reference current	0 to 500A	0.01A	Rated inverter current
-	561	PTC thermistor protection level	0.5 to $30 \mathrm{k} \Omega$, 9999	$0.01 \mathrm{k} \Omega$	9999
-	563	Energization time carrying-over times	(0 to 65535)	1	0
-	564	Operating time carrying-over times	(0 to 65535)	1	0
-	571	Holding time at a start	0 to 10s, 9999	0.1s	9999
PID control	575	Output interruption detection time	0 to 3600s, 9999	0.1s	1s
	576	Output interruption detection level	0 to 400 Hz	0.01 Hz	0Hz
	577	Output interruption cancel level	900 to 1100\%	0.1\%	1000\%
-	611	Acceleration time at a restart	0 to 3600s, 9999	0.1s	9999
-	653	Speed smoothing control	0 to 200\%	0.1\%	0
-	665	Regeneration avoidance frequency gain	0 to 200\%	0.1\%	100
Protective function	872*9	Input phase loss protection selection	0, 1	1	0
Regeneration avoidance function	882	Regeneration avoidance operation selection	0, 1, 2	1	0
	883	Regeneration avoidance operation level	300 to 800 V	0.1 V	$\begin{array}{\|c\|} \hline 400 \mathrm{VDCI} \\ 780 \mathrm{VDC} * 5 \\ \hline \end{array}$
	885	Regeneration avoidance compensation frequency limit value	0 to 10Hz, 9999	0.01 Hz	6 Hz
	886	Regeneration avoidance voltage gain	0 to 200\%	0.1\%	100\%

Function	Pr. No.	Parameter name	Setting range	Min. unit	Initial value
Free parameter	888	Free parameter 1	0 to 9999	1	9999
	889	Free parameter 2	0 to 9999	1	9999
-	891	Cumulative power monitor digit shifted times	0 to 4,9999	1	9999
Calibration parameter	$\begin{gathered} \hline \mathrm{CO}(900) \\ { }_{7} \end{gathered}$	FM terminal calibration	-	-	-
	$\begin{gathered} \text { C2 (902) } \\ { }^{*} 7 \end{gathered}$	Terminal 2 frequency setting bias frequency	0 to 400 Hz	0.01 Hz	OHz
	$\begin{gathered} \hline \text { C3 (902) } \\ \text { *7 } \end{gathered}$	Terminal 2 frequency setting bias	0 to 300\%	0.1\%	0\%
	$\begin{array}{c\|} \hline 125(903) \\ * 7 \\ \hline \end{array}$	Terminal 2 frequency setting gain frequency	0 to 400 Hz	0.01Hz	60 Hz
	$\begin{gathered} \hline \mathrm{C} 4(903) \\ * 7 \\ \hline \end{gathered}$	Terminal 2 frequency setting gain	0 to 300\%	0.1\%	100\%
	$\begin{gathered} \hline \text { C5 (904) } \\ * 7 \end{gathered}$	Terminal 4 frequency setting bias frequency	0 to 400 Hz	0.01Hz	OHz
	$\mathrm{C} \mathrm{C}_{\stackrel{ }{(904)}}$	Terminal 4 frequency setting bias	0 to 300\%	0.1\%	20\%
	$\begin{array}{\|c\|} \hline 126(905) \\ * 7 \\ \hline \end{array}$	Terminal 4 frequency setting gain frequency	0 to 400 Hz	0.01Hz	60 Hz
	$\begin{gathered} \mathrm{C} 7(905) \\ { }^{*} 7 \end{gathered}$	Terminal 4 frequency setting gain	0 to 300\%	0.1\%	100\%
	$\underset{*}{\mathrm{C} 6^{*} 7}$	Frequency setting voltage bias frequency (built-in potentiometer)	0 to 400 Hz	0.01Hz	0
	$\begin{gathered} \mathrm{C} 23(922) \\ { }^{*} 6 * 7 \\ \hline \end{gathered}$	Frequency setting voltage bias (built-in potentiometer)	0 to 300\%	0.1\%	0
	$\underset{*}{\mathrm{C} 24}(923)$	Frequency setting voltage gain frequency (built-in potentiometer)	0 to 400Hz	0.01Hz	60Hz
	$\begin{gathered} \mathrm{C} 25(923) \\ { }^{*} 6 * 7 \\ \hline \end{gathered}$	Frequency setting voltage gain (built-in potentiometer)	0 to 300\%	0.1\%	100\%
PU	990	PU buzzer control	0, 1	1	1
	991	PU contrast adjustment	0 to 63	1	58
Parameter clear	Pr.CL	Parameter clear	0, 1	1	0
	ALLC	All parameter clear	0, 1	1	0
	Er.CL	Faults history clear	0, 1	1	0
Initial change list	Pr.CH	Initial value change list	-	-	-

[^1]Rated current value
For comparison of rated current values between the SC-A series and the FR-D700 series, refer to the tables below.

* In the FR-D700 series, 40 W capacity models are not available. Use 0.1 kW capacity models of the FR-D700 series.

Three-phase 200V

Capacity	40 W	100 W	200 W	400 W
Box type SC-A[][]B				
Unit type SC-A[][]U Panel surface installation type	0.4 A	0.8 A	1.4 A	2.4 A
SC-AN[][]-07 Module type SC-A[][]M				
Compatible FR-D720 * The values in parentheses are capacities of the FR-D720.	0.8 A $(0.1 \mathrm{~kW})$	0.8 A $(0.1 \mathrm{~kW})$	1.4 A $(0.2 \mathrm{~kW})$	2.5 A $(0.4 \mathrm{~kW})$

Single phase 200V

Capacity	100 W	200 W	400 W
Box type SC-A[][]B	Reduced	Reduce	Reduced
Unit type SC-A[][]U	from	d from	from
Panel surface installation type	0.8 A	1.4 A	2.4 A
SC-AN[][]-07	to 0.4 A	to 0.8 A	to 1.4 A
Module type SC-A[][]M			
Compatible FR-D720S * The values in parentheses are capacities of the FR-D720S.	0.8 A $(0.1 \mathrm{~kW})$	0.8 A	1.4 A
$(0.1 \mathrm{~kW})$	$(0.2 \mathrm{~kW})$		

* For single phase input, the SC-A series capacity must be one rank higher than the motor capacity. When using the FR-D700 series, select the single phase input model, FR-D720S.

Single-phase 100V

Capacity	40 W	100 W
Box type SC-A[][]B		
Unit type SC-A[][]U Panel surface installation type	0.4 A	0.8 A
SC-AN[][]-07 Module type SC-A[][]M		
Compatible FR-D710W * The values in parentheses are capacities of the FR-D710W.	0.8 A	0.8 A

[^0]: * In the FR-D700 series, 40W capacity models are not available. Use 0.1 kW capacity models of the FR-D700 series.

[^1]: *1 Differs according to the inverter capacity. 6\%: 0.75K or lower, 4% : 1.5 K to $3.7 \mathrm{~K}, 3 \%$: $5.5 \mathrm{~K}, 7.5 \mathrm{~K}$
 *2 Differs according to the inverter capacity. $5 \mathrm{~s}: 3.7$ or lower, $10 \mathrm{~s}: 5.5 \mathrm{~K}, 7.5 \mathrm{~K}$
 *3 Differs according to the inverter capacity. 6% : $0.1 \mathrm{~K}, 0.2 \mathrm{~K}, 4 \%$: 0.4 K to 7.5 K
 *4 Writing is disabled during the communication via the PU connector (Network operation mode).
 *5 Differs according to the voltage class. (200V class/400V class)
 *6 Set when the FR-E500 series operation panel (PA02) is connected using a cable, and the built-in potentiometer of the operation panel is calibrated.
 *7 The parameter number in parentheses is the one for use with the operation panel (PA02) of the FR-E500 series or the parameter unit (FR-PU04/FR-PU07).
 *8 Communication parameters that are not cleared by parameter clear (all clear) via the RS-485 communication.

 * 9 The setting is available only for the three phase power supply input model.

