Information for Replacement of FR-V500(L) Series with FR-A800 Series

Size, connection, parameters, options concerning replacement are stated on the following pages.

Specifications are subject to change without prior notice.

1. REPLACING INVERTER

The FR-A800 series has two specifications types: FM type and CA type.
When replacing the FR-V500 series of the Japanese specifications, select the FM type (FR-A8[0-0]K-1).

2. SIZE

When the FR-V500 series is replaced with the FR-A800 series, some FR-A800 series models have different installation size from that of the corresponding FR-V500 series models.
Refer to the applicable outline dimension and drill new mounting holes, or use the installation interchange attachment shown in the table below.

Existing inverter	Replacing inverter	Installation size / installation interchange attachment
FR-V520-1.5K	FR-A820-2.2K	Same
FR-V520-2.2K	FR-A820-3.7K	Same
FR-V520-3.7K	FR-A820-5.5K	Same
FR-V520-5.5K	FR-A820-7.5K	Same
FR-V520-7.5K	FR-A820-11K	Different size
FR-V520-11K	FR-A820-15K	Same
FR-V520-15K	FR-A820-18.5K	Same
FR-V520-18.5K	FR-A820-22K	FR-A5AT04
FR-V520-22K	FR-A820-30K	Same installation size, different outline dimension.
FR-V520-30K	FR-A820-37K	Same installation size, different outline dimension.
FR-V520-37K	FR-A820-45K	Same installation size, different outline dimension.
FR-V520-45K	FR-A820-55K	Same installation size, different outline dimension.
FR-V520-55K	FR-A820-75K	Different size
FR-V520L-75K	FR-A820-90K	Different size
FR-V540-1.5K	FR-A840-2.2K	Same
FR-V540-2.2K	FR-A840-3.7K	Same
FR-V540-3.7K	FR-A840-5.5K	Same
FR-V540-5.5K	FR-A840-7.5K	Same
FR-V540-7.5K	FR-A840-11K	FR-AAT24
FR-V540-11K	FR-A840-15K	FR-AAT24
FR-V540-15K	FR-A840-18.5K	Same
FR-V540-18.5K	FR-A840-22K	Same
FR-V540-22K	FR-A840-30K	Same installation size, different outline dimension.
FR-V540-30K	FR-A840-37K	Same installation size, different outline dimension.
FR-V540-37K	FR-A840-45K	Same installation size, different outline dimension.
FR-V540-45K	FR-A840-55K	FR-AAT10
FR-V540-55K	FR-A840-75K	Different size
FR-V540L-75K	FR-A840-90K	Different size
FR-V540L-90K	FR-A840-110K	Different size
FR-V540L-110K	FR-A840-132K	Different size
FR-V540L-132K	FR-A840-160K	Different size
FR-V540L-160K	FR-A840-185K	Different size
FR-V540L-200K	FR-A840-220K	Different size
FR-V540L-250K	FR-A840-280K	Different size

*1 A plug-in option FR-A8AP or FR-A8AL is required for vector control of the FR-A800 inverters.
*2 A separate power supply of $5 \mathrm{~V} / 12 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$ is necessary according to the encoder power specification for vector control of the FR-A800 series. For the FR-A8AL, $5 \mathrm{~V} / 12 \mathrm{~V} / 24 \mathrm{~V}$ encoder power supply is available.
*3 For the FR-A800 series, connect the thermal protector signal from the vector-control-dedicated motor as shown below.

When OH signal is assigned to terminal RH
(Pr. 182 = " 7 ")

Connect the recommended $2 \mathrm{~W} 1 \mathrm{k} \Omega$ resistor between the terminal PC and OH . (Recommended product: MOS2C102J $2 \mathrm{~W} 1 \mathrm{k} \Omega$ by KOA Corporation) Insert the input line and the resistor to a 2 -wire blade terminal, and connect the blade terminal to the terminal OH .
Insulate the lead wire of the resistor, for example by applying a contraction tube, and shape the wires so that the resistor and its lead wire will not touch other cables. Caulk the lead wire securely together with the thermal protector input line using a 2-wire blade terminal. (Do not subject the lead wire's bottom area to an excessive pressure.) To use a terminal as the terminal OH , assign the OH (external thermal O / L relay input) signal to an input terminal. (Set "7" in any of Pr. 178 to Pr.189.)
*4 For the FR-A800 inverters, the initial setting of control method is V/F control. Change parameters for the vector control setting.
*5 The SF-V5RU-H2K or H3K motor can be driven by the FR-A800 inverters whose capacity is equal to that of the FR-V500 inverters.
The installation size is the same for 2.2 K inverters between the FR-V500 series and the FR-A800 series. 3.7 K inverters can be replaced using the FR-AAT22.

Rated current value
The following shows the rated current values of the FR-V500 inverters and the FR-A800 (ND rated) inverters. When compared between the same capacities of the both series, the rated current value of the FR-V500 series is larger than that of the FR-A800 series.
When the FR-V500 series is replaced with the FR-A800 series, use a FR-A800 series inverter which has a capacity one-rank higher than that of the FR-V500 series inverter.
However, when the SF-V5RU-H2K or H3K motor is used, use the inverter with the same capacity rank as the rated motor current is within the inverter rated current.

Comparison table for rated current value

Three-phase 200 V

Capacity	1.5 K	2.2 K	3.7 K	5.5 K	7.5 K	11 K	15 K	18.5 K	22 K	30 K	37 K	45 K	55 K
V 520	9 A	13 A	20 A	28.5 A	37.5 A	54 A	72.8 A	88.0 A	103.5 A	126.5 A	168 A	198 A	264 A
A 820	8 A	11 A	17.5 A	24 A	33 A	46 A	61 A	76 A	90 A	115 A	145 A	175 A	215 A

Capacity	75 K	90 K
V520L	330 A	-
A820	288 A	346 A

Three-phase 400 V

Capacity	1.5 K	2.2 K	3.7 K	5.5 K	7.5 K	11 K	15 K	18.5 K	22 K	30 K	37 K	45 K	55 K
V 540	4.5 A	6.5 A	10 A	14.5 A	18.5 A	27.5 A	35.5 A	44 A	51.8 A	67 A	86 A	99 A	132 A
A 840	4 A	6 A	9 A	12 A	17 A	23 A	31 A	38 A	44 A	57 A	71 A	86 A	110 A

Capacity	75 K	90 K	110 K	132 K	160 K	185 A	200 K	220 K	250 K	280 K
V540L	165 A	195 A	240 A	270 A	330 A	-	415 A	-	505 A	-
A840	144 A	180 A	216 A	260 A	325 A	361 A	-	432 A	481 A	547 A

Outline dimension drawings (Unit: mm)

■FR-V520-1.5K, 2.2K

■FR-V520-3.7K, 5.5K

■FR-A820-2.2K, 3.7K

■FR-A820-5.5K, 7.5K

Inverter model	H	H1	H2	D	D1
FR-A820-5.5K, 7.5 K	260	245	1.5	170	84

-FR-V520-7.5K

-•FR-V520-11K, 15K

■FR-V520-18.5K

mFR-V520-22K

■FR-V520-30K, 37K

aFR-V520-45K

- \quad FR-A820-37K, 45 K

Inverter model	W	W1	H	H1
FR-A820-37K, 45 K	435	380	550	525

Inverter model	H2	d	D	D1
FR-A820-37K, 45K	514	25	250	24

■FR-A820-55K

Inverter model	H2	d	D	D1
FR-A820-55K	664	25	250	22

aFR-V520-55K

■FR-A820-75K

Inverter model	W	W1	H	H1
FR-A820-75K	465	400	740	715

Inverter model	H2	d	D	D1
FR-A820-75K	704	24	360	22

[DC reactor FR-HEL-55K]

W	W1	H	D	D1	D2	D3
153	126	132	209	135	122	140

■FR-V520L-75K

[Accessory DC reactor]

S	S1	ϕ
M6	M6	M12

- \quad FR-A820-90K

Inverter model	W	W1	H	H1
FR-A820-90K	465	400	740	715

Inverter model	H2	d	D	D1
FR-A820-90K	704	24	360	22

[DC reactor FR-HEL-75K]

■FR-V540-1.5K, 2.2K

■FR-V540-3.7K

■FR-A840-2.2K, 3.7K

■FR-A840-5.5K

Inverter model	H	H1	H2	D	D1
FR-A840-5.5K, 7.5 K	260	245	1.5	170	84

■FR-V540-5.5K

■FR-V540-7.5K, 11K

■FR-A840-7.5K

Inverter model	H	H 1	H 2	D	D 1
FR-A840-5.5K, 7.5 K	260	245	1.5	170	84

mFR-A840-11K, 15K

Inverter model	H	H1	H2	D	D1
FR-A840-11K, 15K	300	285	3	190	101.5

■FR-V540-15K, 18.5K

-FR-V540-22K

■FR-V540-30K, 37K

mFR-V540-45K

- F RR-A840-37K, 45K

Inverter model	W	W1	H	H1
FR-A840-37K, 45 K,	435	380	550	525

Inverter model	H2	d	D	D1
FR-A840-37K, 45 K	514	25	250	24

■FR-A840-55K

Inverter model	W	W1	H	H1
FR-A840-55K	435	380	550	525

Inverter model	H2	d	D	D1
FR-A840-55K	514	25	250	24

- $F R$-V540-55K

-FR-A840-75K

Inverter model	W	W1	H	H1
FR-A840-75K	465	400	620	595

Inverter model	H2	d	D	D1
FR-A840-75K	584	24	300	22

[DC reactor FR-HEL-H55K]

W	W1	H	D	D1	D2	D3	d
152	105	206	170	126	106	89	M6

-FR-V540L-75K

[Accessory DC reactor]

S	S1	ϕ
M8	M6	M12

-FR-A840-90K

Inverter model	W	W1	H	H1
FR-A840-90K	465	400	620	595

Inverter model	H2	d	D	D1
FR-A840-90K	584	24	300	22

[DC reactor FR-HEL-H75K]

W	W1	H	$H 1$	D
140	120	320	295	185

■FR-V540L-90K

[Accessory DC reactor]

S	S1	ϕ
M8	M6	M12

- FR-A840-110K

[DC reactor FR-HEL-H9OK]

W	$W 1$	H	$H 1$	D
150	130	340	310	190

- FR-V540L-110K

Inverter model	W	W1	W2	H	H1	D	D1	C
FR-V540L-110K	498	200	474	1010	984	380	185	10

[Accessory DC reactor]

X	Y	Z	Z 1	B	H	G
190	225	438	305	165	400	38

S	S1	S2	ϕ
M8	M8	M8	M12

-FR-A840-132K
2- - 12 hole

[DC reactor FR-HEL-H110K]

W	W1	H	$H 1$	D	S
150	130	340	310	195	M6

aFR-V540L-132K

Inverter model	W	W1	W2	H	H1	D	D1	C
FR-V540L-132K	498	200	474	1010	984	380	185	10

[Accessory DC reactor]

X	Y	Z	$Z 1$	B	H	G
190	225	438	305	165	400	38

S	S1	S2	ϕ
M8	M8	M8	M12

- FR-A840-160K

[DC reactor FR-HEL-H132K]

W	W1	H	H1	D	S
175	150	405	370	200	M8

-FR-V540L-160K

Inverter model	W	W1	W2	H	H1	D	D1	C
FR-V540L-160K	680	300	656	1010	984	380	185	10

[Accessory DC reactor]

X	Y	Z	Z1	B	H	G
210	235	495	350	185	450	44

S	S1	S2	ϕ
M10	M8	M8	M16

- \quad FR-A840-185K

[DC reactor FR-HEL-H160K]

W	W1	H	H1	D	S
175	150	405	370	205	M8

■FR-V540L-200K

Inverter model	W	W1	W2	H	H1	D	D1	C
FR-V540L-200K	790	315	766	1330	1300	440	196	12

[Accessory DC reactor]

S	S1	S2	ϕ
M10	M8	M8	M16

X	Y	Z	Z1	B	H	G
220	250	495	380	195	450	44

-FR-A840-220K

[DC reactor FR-HEL-H220K]

W	W1	H	H1	D	S	S1	S2	ϕ
175	150	405	370	240	M8	M6	M6	M12

-•FR-V540L-250K

Inverter model	W	W1	W2	H	H1	D	D1	C
FR-V540L-250K	790	315	766	1330	1300	440	196	12

[Accessory DC reactor]

X	Y	Z	Z1	B	H	G
220	250	495	380	195	450	44

S	S1	S2	ϕ
M10	M8	M8	M16

3. CONNECTION

The terminal names are basically the same. Connect the terminals according to their names.

Type		V500 terminal name	A800 compatible terminal name	Remarks
Main circuit		R, S, T	R/L1, S/L2, T/L3	
		U, V, W	U, V, W	
		R1, S1	R1/L11, S1/L21	
		P, PR	$\begin{aligned} & \hline \text { P/+, PR } \\ & \text { P3, PR *1 } \end{aligned}$	
		P, N	$\begin{aligned} & \hline \text { P/+, N/- } \\ & \text { P3, N/- *2 } \end{aligned}$	
		P, P1	P/+, P1	
		PR, PX	PR, PX	
		((${ }^{(1)}$	
Control circuitinput signal	Contact	STF	STF	Use Pr. 178 to Pr. 189 to change the function of these terminals.
		STR	STR	
		DI1 (Default setting: RL)	RL	
		DI2 (Default setting: RM)	RM	
		DI3 (Default setting: RH)	RH	
		DI4 (Default setting: RT)	RT	
		OH	CS *3	
		RES	RES	
		SD	SD	
		PC	PC	
Analog	Frequency setting	10E	10E	
		$\begin{aligned} & \hline 2 \text { (0 to } 10 \mathrm{VDC}) \text {, resolution } \\ & 0.03 \% \end{aligned}$	2 (0 to 10 VDC), 12 bits	
		$\begin{aligned} & 3 \text { (} \pm 10 \text { VDC), resolution } \\ & 0.05 \% \end{aligned}$	4 (0 to 10 VDC), 12 bits	Torque limit: Terminal 4 is for a current input by default. It can be switched to the voltage input specification (0 to 10 VDC). Torque command: Use terminal 6 of the plug-in option FR-A8AZ (± 10 VDC), 16 bits. When terminal 1 is not used, terminal 1 is available.
		$\begin{aligned} & \hline 1 \text { (} \pm 10 \mathrm{VDC}) \text {, resolution } \\ & 0.05 \% \end{aligned}$	1 ($\pm 10 \mathrm{VDC}$), 12 bits	
		5	5	
Control circuit output signal	Contact	A, B, C	A1, B1, C1	
	Open collector	DO1 (Default setting: RUN)	RUN	Use Pr. 190 to Pr. 194 to change the function of these terminals.
		DO2 (Default setting: SU)	SU	
		DO3 (Default setting: IPF)	IPF	
		SE	SE	
	Analog	DA1 (± 10 VDC) DA2 (0 to 10VDC) 12 bits	$\begin{aligned} & \text { AM }(\pm 10 \mathrm{VDC}) \\ & 8 \text { bits } \end{aligned}$	Only one terminal (AM) can be used for the analog monitor output. Use the plug-in option FR-A8AZ ($\pm 10 \mathrm{VDC}), 12$ bits, or the FR-A8AY (± 10 VDC), resolution 0.015%.
Communication	RS-485	PU connector	PU connector	

*1) For the FR-A820-15K to 22 K and the FR-A840-18.5K to 22 K , connect the brake resistor between P3 and PR.
${ }^{*}$) For the FR-A820-15K to 22 K and the FR -A840-18.5K to 22 K , connect the brake unit between P 3 and $\mathrm{N} /$-.
*3) To use a terminal as the terminal OH , assign the OH (external thermal O / L relay input) signal to an input terminal. (Set "7" in any of Pr. 178 to Pr.189.)

Terminal size

[Main circuit terminals: Three-phase 200 V]

Voltage class	FR-V520(L)							FR-A820						
	Capacity	R, S, T	U, V, W	P, N, P1	R1, S1	PR	$\stackrel{(1)}{ }$	Capacity	R/L1, S/L2, T/L3	U, V, W	P/+, N/-, P1	R1, S1	PR	$\stackrel{(1)}{ }$
	1.5K	M4	M4	M4	M4	M4	M4	2.2K	M4	M4	M4	M4	M4	M4
	2.2K	M4	M4	M4	M4	M4	M4	3.7K	M4	M4	M4	M4	M4	M4
	3.7K	M5	M5	M5	M4	M5	M5	5.5K	M5	M5	M5	M4	M4	M5
	5.5K	M5	M5	M5	M4	M5	M5	7.5K	M5	M5	M5	M4	M4	M5
	7.5K	M5	M5	M5	M4	M5	M5	11K	M5	M5	M5	M4	M5	M5
	11K	M6	M6	M6	M4	M5	M6	15K	M6	M6	M6	M4	M6	M6
Three-phase	15K	M8	M8	M8	M4	M5	M6	18.5K	M8	M8	M8	M4	M8	M6
200 V	18.5K	M8	M8	M8	M4	-	M6	22K	M8	M8	M8	M4	M8	M6
	22K	M8	M8	M8	M4	-	M6	30K	M8	M8	M8	M4	-	M6
	30K	M10	M10	M10	M4	-	M8	37K	M10	M10	M10	M4	-	M8
	37K	M10	M10	M10	M4	-	M8	45K	M10	M10	M10	M4	-	M8
	45K	M12	M12	M12	M4	-	M8	55K	M12	M12	M12	M4	-	M8
	55K	M12	M12	M12	M4	-	M8	75K	M12	M12	M12	M4	-	M8
	75K	M12	M12	M12	M4	-	M12	90K	M12	M12	M12	M4	-	M8

[Main circuit teminals: Three-phase 400 V]

	Voltage class	FR-V540(L)							FR-A840						
		Capacity	R, S, T	U, V, W	P, N, P1	R1, S1	PR	$\stackrel{(}{)}$	Capacity	R/L1, S/L2, T/L3	U, V, W	P/+, N/-, P1	R1, S1	PR	$\stackrel{(1)}{ }$
	Three-pha 400 V	1.5K	M4	M4	M4	M4	M4	M4	2.2 K	M4	M4	M4	M4	M4	M4
		2.2K	M4	M4	M4	M4	M4	M4	3.7K	M4	M4	M4	M4	M4	M4
		3.7K	M4	M4	M4	M4	M4	M4	5.5K	M4	M4	M4	M4	M4	M4
		5.5K	M4	M4	M4	M4	M4	M4	7.5K	M4	M4	M4	M4	M4	M4
		7.5K	M6	M6	M6	M4	M5	M6	11K	M5	M5	M5	M4	M5	M5
		11K	M6	M6	M6	M4	M5	M6	15K	M5	M5	M5	M4	M5	M5
		15K	M6	M6	M6	M4	M5	M6	18.5K	M6	M6	M6	M4	M6	M6
		18.5K	M6	M6	M6	M4	-	M6	22K	M6	M6	M6	M4	M6	M6
$\begin{aligned} & \text { NON } \\ & \hline \text { N} \end{aligned}$		22K	M6	M6	M6	M4	-	M6	30K	M6	M6	M6	M4	-	M6
点		30K	M8	M8	M8	M4	-	M8	37K	M8	M8	M8	M4	-	M8
		37K	M8	M8	M8	M4	-	M8	45K	M8	M8	M8	M4	-	M8
		45K	M8	M8	M8	M4	-	M8	55K	M8	M8	M10	M4	-	M8
		55K	M8	M8	M8	M4	-	M8	75K	M10	M10	M10	M4	-	M10
		75K	M10	M10	M10	M4	-	M10	90K	M10	M10	M10	M4	-	M10
		90K	M10	M10	M10	M4	-	M10	110K	M10	M10	M10	M4	-	M10
		110K	M12	M12	M12	M4	-	M10	132K	M10	M10	M10	M4	-	M10
		132K	M12	M12	M12	M4	-	M10	160K	M12	M12	M12	M4	-	M10
		160K	M12	M12	M12	M4	-	M10	185K	M12	M12	M12	M4	-	M10
		200K	M12	M12	M12	M4	-	M10, M20	220K	M12	M12	M12	M4	-	M10
署		250K	M12	M12	M12	M4		M10, M20	280K	M12	M12	M12	M4	-	M10

[Control circuit terminals]
Terminal block screw shape at the wiring section of the control circuit terminal block

FR-V500(L)	FR-A800
M3.5	Spring clamp type
\oplus screw type terminal block	

Terminal block screw shape at the encoder cable wiring section

FR-V500(L)	FR-A800 (FR-A8AP)
M3.5	Insertion type θ screw terminals

The control circuit terminal layout differs between the FR-V500(L) and the FR-A800 series. Check the terminal names and positions before performing wiring.
-Control circuit terminal layout of the FR-V500(L) series

-Control circuit terminal layout of the FR-A800 series

*1) This terminal operates as the terminal FM for the FM type inverter, and as the terminal CA for the CA type inverter.
${ }^{*}$) Represents the teminal STOP.

-Wiring method

- Power supply connection

For the control circuit wiring, strip off the sheath of a cable, and use it with a blade terminal. For a single wire, strip off the sheath of the wire and apply directly.
Insert the blade terminal or the single wire into a socket of the terminal.
(1)Strip off the sheath for the below length. If the length of the sheath peeled is too long, a short circuit may occur with neighboring wires. If the length is too short, wires might come off.
Wire the stripped cable after twisting it to prevent it from becoming loose. In addition, do not solder it.

(2)Crimp the blade terminal.

Insert wires to a blade terminal, and check that the wires come out for about 0 to 0.5 mm from a sleeve.
Check the condition of the blade terminal after crimping. Do not use a blade terminal of which the crimping is inappropriate, or the face is damaged.

- Blade terminals commercially available (as of February 2012)

Phoenix Contact Co., Ltd.

Cable gauge (mm^{2})	Blade terminal model			Crimping tool name
	With insulation sleeve	Without insulation sleeve	For UL wire*1	
0.3	AI 0,5-10WH	-	-	CRIMPFOX 6
0.5	AI 0,5-10WH	-	AI 0,5-10WH-GB	
0.75	AI 0,75-10GY	A 0,75-10	AI 0,75-10GY-GB	
1	Al 1-10RD	A 1-10	Al 1-10RD/1000GB	
1.25, 1.5	Al 1,5-10BK	A 1,5-10	AI 1,5-10BK/1000GB ${ }^{\text {a }}$	
0.75 (for two wires)	Al-TWIN $2 \times 0,75-10 \mathrm{GY}$	-	-	

${ }^{1}$ A blade terminal with an insulation sleeve compatible with the MTW wire which has a thick wire insulation.
*2 Applicable for the terminal A1, B1, C1, A2, B2, C2.
NICHIFU Co., Ltd.

Cable gauge $\left(\mathbf{m m}^{2}\right)$	Blade terminal product number	Insulation product number	Crimping tool product number
0.3 to 0.75	$\mathrm{BT} 0.75-11$	VC 0.75	NH 69

(3)Insert the wires into a socket.

When using a single wire or stranded wires without a blade terminal, push the open/close button all the way down with a flathead screwdriver, and insert the wire.

- -NOTE

- When using stranded wires without a blade terminal, twist enough to avoid short circuit with a nearby terminals or wires.
- Place the flathead screwdriver vertical to the open/close button. In case the blade tip slips, it may cause an inverter damage or injury.
- Wire removal

Pull the wire while pushing the open/close button all the way down firmly with a flathead screwdriver.

OMOTETM

- Pulling out the wire forcefully without pushing the open/close button all the way down may damage the terminal block.
- Use a small flathead screwdriver (tip thickness: $0.4 \mathrm{~mm} / \mathrm{tip}$ width: 2.5 mm).
If a flathead screwdriver with a narrow tip is used, terminal block may be damaged.
Commercially available products (as of February 2012)

Name	Model	Manufacturer
Driver	SZF	
	$0-0,4 \times 2,5$	Phoenix Contact Co., Ltd.

- Place the flathead screwdriver vertical to the open/close button. In case the blade tip slips, it may cause an inverter damage or injury.

Connection of encoder signals
Connect the encoder signals to the plug-in option unit FR-A8AP installed in the FR-A800.

Type	V500(L) terminal name	A8AP compatible terminal name
Encoder signals	PA	PA1
	PAR	PA2
	PB	PB1
	PBR	PB2
	PZ	PZ1
	PZR	PZ2
	PG	PG
	SD	SD

Instructions for connecting the vector control dedicated motor SF-V5RU:
When connecting the vector control dedicated motor SF-V5RU, set the FR-A8AP as follows.

- Encoder type selection switch: Complementary
- Intemal terminating resistor selection switch: OFF

As the insertion type terminal block is used, cables need to be modified to use the FR-V5CBL.

When connecting the SF-V5RU, set the switches of the FR-A8AP as shown above.

4．PARAMETER

4．1．Parameter list

Note that most parameter numbers of inverters in both series are the same but some setting values differ．Refer to the following table to set the parameters．

List of FR－A800 series parameters compatible with the FR－V500 series

The following table shows the parameter settings required when replacing an FR－V500 series inverter by an FR－A800 series inverter
When an FR－V500 series parameter is set to a value other than the initial value，set the corresponding FR－A800 series parameter according to the following table．
When an FR－V500 series parameter is set to an initial value，it is usually not necessary to change the corresponding FR－A800 series parameter setting．
The parameters with Δ are used for adjustment．Set them as required．
The parameter replacement following the table below does not guarantee the inverter characteristics or performance．

The parameter number of the \qquad parameters differs from that of the FR－V500 series inverter．

FR－V500 parameter list				FR－A800 compatible parameter				
Pr．	Name	Setting range	Initial value	Pr．	Name	Setting range	Initial value	S
0	Torque boost	0 to 30\％	1．5K to $3.7 \mathrm{~K}: 4 \%$ 5．5K，7．5K：3\％ 11K to 55K：2\％ 75K or higher：1\％	0	Torque boost	0 to 30\％	0.4 to 0．75K：6\％ 1．5K to 3.7 K ： 4% 5．5K，7．5K：3\％ 11 K to $55 \mathrm{~K}: 2 \%$ 75K or higher：1\％	
1	Maximum speed	0 to $3600 \mathrm{r} / \mathrm{min}$	$1500 \mathrm{r} / \mathrm{min}$	1	Maximum frequency	0 to 120 Hz	55 K or lower： 120 Hz 75 K or higher： 60 Hz	
2	Minimum speed	0 to $3600 \mathrm{r} / \mathrm{min}$	$0 \mathrm{r} / \mathrm{min}$	2	Minimum frequency	0 to 120 Hz	0 Hz	
3	Base frequency	10 to 200 Hz	60 Hz	3	Base frequency	0 to 590 Hz	60 Hz	
4	Multi－speed setting （high speed）	0 to $3600 \mathrm{r} / \mathrm{min}$	$1500 \mathrm{r} / \mathrm{min}$	4	Multi－speed setting （high speed）	0 to 590 Hz	60 Hz	
5	Multi－speed setting （middle speed）	0 to $3600 \mathrm{r} / \mathrm{min}$	$750 \mathrm{r} / \mathrm{min}$	5	Multi－speed setting （middle speed）	0 to 590 Hz	30 Hz	
6	Multi－speed setting （low speed）	0 to $3600 \mathrm{r} / \mathrm{min}$	$150 \mathrm{r} / \mathrm{min}$	6	Multi－speed setting （low speed）	0 to 590 Hz	10 Hz	
7	Acceleration time	$\begin{gathered} 0 \text { to } 3600 \mathrm{~s} / \\ 0 \text { to } 360 \mathrm{~s} \\ \hline \end{gathered}$	5．5K or lower： 5 s 7．5K or higher： 15 s	7	Acceleration time	$\begin{gathered} 0 \text { to } 3600 \mathrm{~s} / \\ 0 \text { to } 360 \mathrm{~s} \\ \hline \end{gathered}$	7．5K or lower： 5 s 11 K or higher： 15 s	
8	Deceleration time	$\begin{gathered} 0 \text { to } 3600 \mathrm{~s} / \\ 0 \text { to } 360 \mathrm{~s} \\ \hline \end{gathered}$	5．5K or lower： 5 s 7．5K or higher： 15 s	8	Deceleration time	$\begin{gathered} 0 \text { to } 3600 \mathrm{~s} / \\ 0 \text { to } 360 \mathrm{~s} \\ \hline \end{gathered}$	7.5 K or lower： 5 s 11 K or higher： 15 s	
9	$\begin{array}{\|l} \hline \text { Electronic thermal O/L } \\ \text { relay } \\ \hline \end{array}$	0 to 500 A	OA	9	$\begin{aligned} & \hline \begin{array}{l} \text { Electronic thermal O/L } \\ \text { relay } \end{array} \\ & \hline \end{aligned}$	0 to 500 A（55K or lower） 0 to 3600 A （ 75 K or higher）	Rated output current	
10	DC injection brake operation speed	0 to $1500 \mathrm{r} / \mathrm{min}, 9999$	$15 \mathrm{r} / \mathrm{min}$	10	DC injection brake operation frequency	0 to $120 \mathrm{~Hz}, 9999$	3 Hz	
11	DC injection brake operation time	0 to 0.5 s	0.5 s	11	DC injection brake operation time	0 to $10 \mathrm{~s}, 8888$	0.5 s	
12	DC injection brake voltage	0 to 30\％	7．5K or lower：4\％ 11 K to $55 \mathrm{~K}: ~ 2 \%$ 75K or higher：1\％	12	DC injection brake operation voltage	0 to 30\％	7．5K or lower：4\％ 11 K to 55 K ： 2% 75K or higher：1\％	
13	Starting speed	0 to $1500 \mathrm{r} / \mathrm{min}$	$15 \mathrm{r} / \mathrm{min}$	13	Starting frequency	0 to 60 Hz	0.5 Hz	
15	Jog speed setting	0 to $1500 \mathrm{r} / \mathrm{min}$	$150 \mathrm{r} / \mathrm{min}$	15	Jog frequency	0 to 590 Hz	5 Hz	
16	Jog acceleration／deceleration time	$\begin{gathered} 0 \text { to } 3600 \mathrm{~s} / \\ 0 \text { to } 360 \mathrm{~s} \end{gathered}$	0.5 s	16	Jog acceleration／deceleration time	$\begin{gathered} 0 \text { to } 3600 \mathrm{~s} / \\ 0 \text { to } 360 \mathrm{~s} \end{gathered}$	0.5 s	
17	MRS input selection	0， 2	0	17	MRS input selection	0，2， 4	0	
19	Base frequency voltage	0 to $1000 \mathrm{~V}, 8888,9999$	9999	19	Base frequency voltage	0 to $1000 \mathrm{~V}, 8888,9999$	9999	
20	Acceleration／deceleration reference speed	0 to $1500 \mathrm{r} / \mathrm{min}$	$1500 \mathrm{r} / \mathrm{min}$	20	Acceleration／deceleration reference frequency	1 to 590 Hz	60 Hz	
21	Acceleration／deceleration time increments	0， 1	0	21	Acceleration／deceleration time increments	0， 1	0	

Change the FR－V500 parameter and set． \times ：Adjust or set the FR－A800 parameter．
BCN－C21002－165G

FR-V500 parameter list				FR-A800 compatible parameter				Parameter setting	
Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Setting	Remarks
22	Torque limit level	0 to 200\%	150\%	22	Stall prevention operation level	0 to 400\%	150\%	Δ	For stall prevention, set the value calculated with the following formula. Pr. 22 setting (FR-V500) × rated current (FR-V500) / rated current (FR-A800). The torque limit remains the same. The upper limit of the setting value is 400%.
24	Multi-speed setting (speed 4)	0 to $3600 \mathrm{r} / \mathrm{min}$, 9999	9999	24	Multi-speed setting (speed 4)	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
25	Multi-speed setting (speed 5)	0 to $3600 \mathrm{r} / \mathrm{min}$, 9999	9999	25	Multi-speed setting (speed 5)	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
26	Multi-speed setting (speed 6)	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	26	Multi-speed setting (speed 6)	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
27	Multi-speed setting (speed 7)	0 to $3600 \mathrm{r} / \mathrm{min}$, 9999	9999	27	Multi-speed setting (speed 7)	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
28	Multi-speed input compensation	0,1	0	28	Multi-speed input compensation selection	0, 1	0	\bigcirc	
29	Acceleration/deceleration pattern	0, 1, 2, 3, 4	0	29	Acceleration/deceleration pattern selection	0 to 6	0	\bigcirc	
30	Regenerative function selection	0, 1, 2	0	30	Regenerative function selection	$\begin{gathered} 0 \text { to } 2,10,11,20,21, \\ 100 \text { to } 102,110,111,120,121 \\ \hline \end{gathered}$	0	\bigcirc	
31	Speed jump 1A	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	31	Frequency jump 1A	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
32	Speed jump 1B	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	32	Frequency jump 1B	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
33	Speed jump 2A	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	33	Frequency jump 2A	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
34	Speed jump 2B	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	34	Frequency jump 2B	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
35	Speed jump 3A	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	35	Frequency jump 3A	0 to 590 Hz , 9999	9999	\times	
36	Speed jump 3B	0 to $3600 \mathrm{r} / \mathrm{min}$, 9999	9999	36	Frequency jump 3B	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
37	Speed display	0,1 to 9998	0	37	Speed display	0,1 to 9998	0	\bigcirc	
41	Up-to-speed sensitivity	0 to 100\%	10\%	41	Up-to-frequency sensitivity	0 to 100\%	10\%	\bigcirc	
42	Speed detection	0 to $3600 \mathrm{r} / \mathrm{min}$	$300 \mathrm{r} / \mathrm{min}$	42	Output frequency detection	0 to 590 Hz	6 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
43	Speed detection for reverse rotation	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	43	Output frequency detection for reverse rotation	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
44	Second acceleration/deceleration time	$\begin{gathered} 0 \text { to } 3600 \mathrm{~s} / \\ 0 \text { to } 360 \mathrm{~s} \\ \hline \end{gathered}$	5 s	44	Second acceleration/deceleration time	$\begin{gathered} 0 \text { to } 3600 \mathrm{~s} / \\ 0 \text { to } 360 \mathrm{~s} \\ \hline \end{gathered}$	5 s	\bigcirc	Changing Pr. 21 after setting this parameter will change the set value.
45	Second deceleration time	$\begin{gathered} 0 \text { to } 3600 \mathrm{~s} / \\ 0 \text { to } 360 \mathrm{~s}, 9999 \\ \hline \end{gathered}$	9999	45	Second deceleration time	$\begin{gathered} 0 \text { to } 3600 \mathrm{~s} / \\ 0 \text { to } 360 \mathrm{~s}, 9999 \\ \hline \end{gathered}$	9999	\bigcirc	Changing Pr. 21 after setting this parameter will change the set value.
50	Second speed detection	0 to $3600 \mathrm{r} / \mathrm{min}$	$750 \mathrm{r} / \mathrm{min}$	50	Second output frequency detection	0 to 590 Hz	30 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
52	DU/PU main display data selection	$\begin{array}{\|l} 0,5 \text { to } 12,17 \text { to } 20,23, \\ 24,32 \text { to } 35,38,100 \end{array}$	0	52	Operation panel main monitor selection	0,5 to 14,17 to 20,22 to 35 , 38,40 to 45,50 to $57,61,62$, $64,67,87$ to 98,100	0	\bigcirc	When Pr. $52=$ " 23 ", the monitor display increment for actual operation time is changed.
53	PU level display data selection	0 to 3,5 to 12, 17, 18	1	-	-	-	-	-	This function was deleted for the FR-A800.
54	DA1 terminal function selection	$\begin{gathered} 1 \text { to } 3,5 \text { to } 12,17,18, \\ 21,32 \text { to } 34,36 \end{gathered}$	1	54	FM/CA terminal function selection	1 to 3,5 to $14,17,18,21,24$ 32 to $34,50,52,53,61,62$, 67, 70, 87 to $90,92,93,95$, 97, 98	1	Δ	Setting "36" (Torque monitor) is not available for the FR-A800.
55	Speed monitoring reference	0 to $3600 \mathrm{r} / \mathrm{min}$	$1500 \mathrm{r} / \mathrm{min}$	55	Frequency monitoring reference	0 to 590 Hz	60 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
56	Current monitoring reference	$\begin{gathered} 0 \text { to } 500 \mathrm{~A}(\mathrm{~V} 500) \\ 0 \text { to } 3600 \mathrm{~A}(\mathrm{~V} 500 \mathrm{~L}) \\ \hline \end{gathered}$	Rated output current	56	Current monitoring reference	0 to 500 A (55 K or lower) 0 to 3600 A (75 K or higher)	Rated output current	\bigcirc	
57	Restart coasting time	$0,0.1$ to $5 \mathrm{~s}, 9999$	9999	57	Restart coasting time	$0,0.1$ to $30 \mathrm{~s}, 9999$	9999	Δ	When Pr. $57=$ " 0 ", the coasting time differs. It is usually not necessary to change the value. For the same time setting as the FR-V500, set 0.1 s. If the CS signal is not assigned to any input terminal, the restart operation is enabled at all times by setting Pr. 57 in the FR-A800.
58	Restart cushion time	0 to 60 s	1.0 s	58	Restart cushion time	0 to 60 s	1.0 s	\bigcirc	
59	Remote setting function selection	0, 1, 2, 3	0	59	Remote function selection	0 to 3,11 to 13	0	\odot	
60	Intelligent mode selection	0, 7, 8	0	292	Automatic acceleration/deceleration	0, 1, 3, 5 to 8, 11	0	Δ	For the same operation as the FR-V500 with Pr.292="7 or 8" (brake sequence), Pr.639, Pr.640, and Pr. 641 of the FR-A800 must be the initial values.
65	Retry selection	0 to 5	0	65	Retry selection	0 to 5	0	\bigcirc	
67	Number of retries at alarm occurrence	0 to 10, 101 to 110	0	67	Number of retries at fault occurrence	0 to 10, 101 to 110	0	\bigcirc	
68	Retry waiting time	0 to 10 s	1 s	68	Retry waiting time	0.1 to 600 s	1 s	\bigcirc	
69	Retry count display erasure	0	0	69	Retry count display erase	0	0	\bigcirc	

FR-V500 parameter list				FR-A800 compatible parameter				Parameter setting	
Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Setting	Remarks
70	Special regenerative brake duty	$\begin{aligned} & 0 \text { to } 15 \% \\ & 0 \text { to } 30 \% \\ & \hline \end{aligned}$	0\%	70	Special regenerative brake duty	0 to 100\%	0\%	Δ	Set the permissible brake resistor duty in this parameter.
71	Applied motor	$\begin{aligned} & 0,3 \text { to } 8,10,13 \text { to } 18 \text {, } \\ & 20,23,24,30,33,34 \end{aligned}$	30	71	Applied motor	0 to 6, 13 to 16, 20, 23, 24, $30,33,34,40,43,44,50,53$, 54, 70, 73, 74, 330, 333, 334, 8090, 8093, 8094, 9090, 9093,	0	Δ	V500 \rightarrow A800 The values in parentheses are for when Pr. 96 of the FR-V500 is set to "3 or 103". $7 \rightarrow 5(3), 8 \rightarrow 6(3), 17 \rightarrow 15(13)$ $18 \rightarrow 16(13)$ Only for V500L $20,23 \text {, and } 24 \rightarrow 1,13 \text { (14) }$ Offline tuning required
72	PWM frequency selection	0 to 6	1	72	PWM frequency selection	55K or lower: 0 to 15 75 K or higher: 0 to 6,25	2	Δ	
73	Speed setting signal	0, 4, 10, 14	0	73	Analog input selection	0 to 7, 10 to 17	1	Δ	The initial value is different. Change the setting from "1" to "0".
75	Reset selection/ disconnected PU detection/ PU stop selection	0 to 3,14 to 17	14	75	Reset selection/ disconnected PU detection/ PU stop selection	55K or lower: 0 to 3, 14 to 17 75 K or higher: 0 to 3,14 to 17 , 100 to 103,114 to 117	14	\bigcirc	
77	Parameter write disable selection	0, 1, 2	0	77	Parameter write selection	0, 1, 2	0	\bigcirc	
78	Reverse rotation prevention selection	0, 1, 2	0	78	Reverse rotation prevention selection	0, 1, 2	0	\bigcirc	
79	Operation mode selection	0 to 4, 6 to 8	1	79	Operation mode selection	0 to 4, 6, 7	0	\times	When the FR-V500 setting is " 8 ", set Pr.182="16" for the FR-A800.
80	Motor capacity	0.4 to $55 \mathrm{~kW}, 9999$ (V500) 0 to 3600 kW (V500L)	Inverter capacity	80	Motor capacity	55 K or lower: 0.4 to 55 kW , 9999 75 K or higher: 0 to 3600 kW , 9999	9999	\times	Keep the Pr. 80 setting the same as in the FR-V500. Set the number of motor poles in Pr.81, and set Pr. $800=" 0$ " (vector control).
81	Number of motor poles	2, 4, 6	4	81	Number of motor poles	2, 4, 6, 8, 10, 12, 9999	9999	\bigcirc	
82	Motor excitation current (no load current)	0 to, 9999	9999	82	Motor excitation current	55 K or lower: 0 to 500 A , 9999 75 K or higher: 0 to 3600 A , 9999	9999	\bigcirc	
83	Rated motor voltage	0 to 1000 V	$\begin{aligned} & 200 \mathrm{~V} \text { class: } 200 \mathrm{~V} \\ & 400 \mathrm{~V} \text { class: } 400 \mathrm{~V} \end{aligned}$	83	Rated motor voltage	0 to 1000 V	$\begin{aligned} & 200 \mathrm{~V} \text { class: } 200 \mathrm{~V} \\ & 400 \mathrm{~V} \text { class: } 400 \mathrm{~V} \\ & \hline \end{aligned}$	\times	Refer to the tables below for setting in the SF-V5RU (1500 r/min series), SF-V5RU1,
84	Rated motor frequency	10 to 200 Hz	60 Hz	84	Rated motor frequency	10 to $400 \mathrm{~Hz}, 9999$	9999	\times	SF-V5RU3, or SF-V5RU4 motor.
90	Motor constant R1	0 to, 9999	9999	90	Motor constant (R1)	55 K or lower: 0 to $50 \Omega, 9999$ 75 K or higher: 0 to $400 \mathrm{~m} \Omega$, 9999	9999	\times	
91	Motor constant R2	0 to, 9999	9999	91	Motor constant (R2)	55 K or lower: 0 to $50 \Omega, 9999$ 75 K or higher: 0 to $400 \mathrm{~m} \Omega$, 9999	9999	\times	
92	Motor constant L1	0 to, 9999	9999	92	Motor constant (L1)	55 K or lower: 0 to 50Ω (0 to 1000 mH), 9999 75 K or higher: 0 to $3600 \mathrm{~m} \Omega$ (0 to 400 mH), 9999	9999	\times	Connect the motor, and perform auto tuning.
93	Motor constant L2	0 to, 9999	9999	93	Motor constant (L2)	55 K or lower: 0 to 50Ω (0 to 1000 mH), 9999 75 K or higher: 0 to $3600 \mathrm{~m} \Omega$ (0 to 400 mH), 9999	9999	\times	
94	Motor constant X	0 to, 9999	9999	94	Motor constant (X)	0 to 100\%, 9999	9999	\times	
95	Online auto tuning selection	0 to, 9999	9999	95	Online auto tuning selection	0, 1, 2	0	\times	Set "2" (magnetic flux observer (tuning always)) for vector control.
96	Auto tuning setting/status	0, 1, 101	0	96	Auto tuning setting/status	0, 1, 11,101	0	\times	Perform tuning again when Pr.96="1 or 101" 101".

When using the SF-V5RU ($1500 \mathrm{r} / \mathrm{min}$ series)

Motorcapacity	SF-VSRU			
	200 V		400 V	
	Pr. 83 (V)	Pr. 84 (Hz)	Pr. 83 (V)	Pr. 84 (Hz)
18.5 kW	171	51	346	51
22 kW	160	51	336	51
30 kW	178	51	328	51
37 kW	166	51	332	51
45 kW	171	51	342	51
55 kW	159	51	317	51

When using the SF-V5RU1, SF-V5RU3, or SF-V5RU4

Motor model	Pr. 83 setting		Pr. 84 setting
	200 V class	400 V class	
SF-V5RU1-30kW or lower	160 V	320 V	33.33 Hz
SF-V5RU1-37kW	170 V	340 V	
SF-V5RU3-22kW or lower	160 V	320 V	
SF-V5RU3-30kW	170 V	340 V	
SF-V5RU4-3.7kW and 7.5kW	150 V	300 V	16.67 Hz
SF-V5RU4 and motors other than described above	160 V	320 V	

FR-V500 parameter list				FR-A800 compatible parameter				Parameter setting	
Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Setting	Remarks
110	Third acceleration/deceleration time	0 to 3600 / 0 to 360 s	5 s	110	Third acceleration/ deceleration time	0 to 3600 / 0 to $360 \mathrm{~s}, 9999$	9999	\bigcirc	Changing Pr. 21 after setting this parameter will change the set value.
111	Third deceleration time	$\begin{gathered} 0 \text { to } 3600 / 0 \text { to } 360 \mathrm{~s}, \\ 9999 \end{gathered}$	9999	111	Third deceleration time	0 to $3600 / 0$ to $360 \mathrm{~s}, 9999$	9999	\bigcirc	Changing Pr. 21 after setting this parameter will change the set value.
116	Third speed detection	0 to $3600 \mathrm{r} / \mathrm{min}$	1500 r/min	116	Third output frequency detection	0 to 590 Hz	60 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to " $\mathrm{r} / \mathrm{min}$ ", and then set the same as in the FR-V500 setting.
117	Communication station number	0 to 31	0	117	PU communication station number	0 to 31	0	\bigcirc	
118	Communication speed	48, 96, 192	192	118	PU communication speed	$\begin{gathered} 48,96,192,384,576,768 \\ 1152 \\ \hline \end{gathered}$	192	\bigcirc	
119	Stop bit length/data length	0, 1, 10, 11	1	119	PU communication stop bit length / data length	0, 1, 10, 11	1	\bigcirc	
120	Parity check presence/absence	0, 1, 2	2	120	PU communication parity check	0, 1, 2	2	\bigcirc	
121	Number of communication retries	0 to 10, 9999	1	121	Number of PU communication retries	0 to 10, 9999	1	\bigcirc	
122	Communication check time interval	$0,0.1$ to $999.8 \mathrm{~s}, 9999$	0	122	PU communication check time interval	$0,0.1$ to $999.8 \mathrm{~s}, 9999$	9999	\bigcirc	
123	Waiting time setting	0 to $150 \mathrm{~ms}, 9999$	9999	123	PU communication waiting time setting	0 to 150, 9999	9999	\bigcirc	
124	CR, LF selection	0, 1, 2	1	124	PU communication CR/LF selection	0, 1, 2	1	\bigcirc	
128	PID action selection	10, 11, 30, 31	10	128	PID action selection	$0,10,11,20,21,40$ to 43,50 , 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 1000, 1001, 1010, 1011, 2000, 2001, 2010, 2011	0	\times	When Pr. 128="30, 31" \rightarrow "20, 21", change the terminal for measured value signal from terminal 1 to terminal 4. To use terminal 4 as an alternative to terminal 1 (voltage input), set Pr.267="2", turn OFF switch 1 on the board, and change terminal 4 input to 10 V input. When the PID control is not used, set " 0 " for the FR-A800. Even if the X14 signal is not assigned to any input terminal, the PID control is enabled by setting Pr. 128 in the FR-A800.
129	PID proportional band	0.1 to 1000\%, 9999	100\%	129	PID proportional band	0.1 to 1000\%, 9999	100\%	\bigcirc	
130	PID integral time	0.1 to 3600 s , 9999	1 s	130	PID integral time	0.1 to $3600 \mathrm{~s}, 9999$	1 s	\bigcirc	
131	Upper limit	0 to 100\%, 9999	9999	131	PID upper limit	0 to 100\%, 9999	9999	\bigcirc	
132	Lower limit	0 to 100\%, 9999	9999	132	PID lower limit	0 to 100\%, 9999	9999	\bigcirc	
133	PID action set point for PU operation	0 to 100\%	0\%	133	PID action set point	0 to 100\%, 9999	9999	Δ	When the value of terminal 2 is used as a set point for the FR-A800, set "9999". When the value other than " 9999 " is set for the FR-A800, the set point will be also valid for operations other than the PU operation.
134	PID differential time	0.01 to $10 \mathrm{~s}, 9999$	9999	134	PID differential time	0.01 to $10.00 \mathrm{~s}, 9999$	9999	\bigcirc	
140	Backlash acceleration stopping speed	0 to $3600 \mathrm{r} / \mathrm{min}$	$30 \mathrm{r} / \mathrm{min}$	140	Backlash acceleration stopping frequency	0 to 590 Hz	1 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
141	Backlash acceleration stopping time	0 to 360 s	0.5 s	141	Backlash acceleration stopping time	0 to 360 s	0.5 s	\bigcirc	
142	Backlash deceleration stopping speed	0 to $3600 \mathrm{r} / \mathrm{min}$	$30 \mathrm{r} / \mathrm{min}$	142	Backlash deceleration stopping frequency	0 to 590 Hz	1 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
143	Backlash deceleration stopping time	0 to 360 s	0.5 s	143	Backlash deceleration stopping time	0 to 360 s	0.5 s	\bigcirc	
144	Speed setting switchover	0, 2, 4, 6, 8, 10	0	144	Speed setting switchover	$\begin{gathered} 0,2,4,6,8,10,12,102,104 \\ 106,108,110,112 \\ \hline \end{gathered}$	4	\times	When a Mitsubishi vector control dedicated motor is used, set "104".
145	PU display language selection	0 to 7	0	145	PU display language selection	0 to 7	0	\bigcirc	
150	Output current detection level	0 to 200\%	150\%	150	Output current detection level	0 to 400\%	150\%	\bigcirc	
151	Output current detection period	0 to 10 s	0	151	Output current detection signal delay time	0 to 10 s	0	\bigcirc	
152	Zero current detection level	0 to 200\%	5.0\%	152	Zero current detection level	0 to 400\%	5.0\%	\bigcirc	
153	Zero current detection period	0 to 1 s	0.5 s	153	Zero current detection time	0 to 10 s	0.5 s	\bigcirc	
156	Stall prevention operation selection	0 to 31, 100, 101	0	156	Stall prevention operation selection	0 to 31, 100, 101	0	\bigcirc	
157	OL signal output timer	0 to $25 \mathrm{~s}, 9999$	0	157	OL signal output timer	0 to $25 \mathrm{~s}, 9999$	0	\bigcirc	
158	DA2 terminal function selection	$\begin{array}{r} 1 \text { to } 3,5 \text { to } 12,17,18,21 \text {, } 32 \text { to } 34,36 \end{array}$	1	158	AM terminal function selection	1 to 3,5 to $14,17,18,21,24$, 32 to $34,50,52$ to $54,61,62$, $67,70,87$ to 90,91 to 98	1	Δ	Setting " 36 " (Torque monitor) is not available for the FR-A800.

FR-V500 parameter list				FR-A800 compatible parameter				Parameter setting	
Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Setting	Remarks
160	Extended function selection	0, 1	0	160	User group read selection	0, 1,9999	0	\times	With the initial value, simple mode parameters and extended parameters can be displayed for FR-A800.
162	Automatic restart after instantaneous power failure selection	0, 1, 10	0	162	Automatic restart after instantaneous power failure selection	0 to 3, 10 to 13	0	\bigcirc	
163	First cushion time for restart	0 to 20 s	0 s	163	First cushion time for restart	0 to 20 s	0 s	\bigcirc	
164	First cushion voltage for restart	0 to 100\%	0\%	164	First cushion voltage for restart	0 to 100\%	0\%	\bigcirc	
165	Restart current limit level	0 to 200\%	150\%	165	Stall prevention operation level for restart	0 to 400\%	150\%	+	Set the value calculated with the following formula. Pr. 165 setting (FR-V500) \times Rated current (FR-V500) / Rated current (FR-A800) In the case of V520-11K: Rated current (V520-11K)=54 A, Pr. 165=150\% Rated current (A820-15K) $=61 \mathrm{~A}$ $150 \% \times 54 \mathrm{~A} / 61 \mathrm{~A}=132.8 \%$
171	Actual operation hour meter clear	0	0	171	Operation hour meter clear	0,9999	9999	\bigcirc	Actual operation hour meter is cleared by writing " 0 ".
180	DI1 terminal function selection	$\begin{gathered} 0 \text { to } 3,5,8 \text { to } 12,14 \\ \text { to } 16,20,22 \text { to } 28, \\ 42 \text { to } 44,9999 \end{gathered}$	0	180	RL terminal function selection	0 to 20, 22 to 28, 37, 42 to 47,50 , 51, 62,64 to 74,76 to $80,87,92$, 93, 9999	0	\bigcirc	Terminals DI1, DI2, DI3, and DI4 correspond to terminals RL, RM, RH, and RT respectively.
181	DI2 terminal function selection		1	181	RM terminal function selection		1	\bigcirc	
182	DI3 terminal function selection		2	182	RH terminal function selection		2	\bigcirc	
183	DI4 terminal function selection		3	183	RT terminal function selection		3	\bigcirc	
187	STR terminal function selection		9999	179	STR terminal function selection	$\begin{gathered} \hline 0 \text { to } 20,22 \text { to } 28,37,42 \text { to } 47,50, \\ 51,61,62,64 \text { to } 74,76 \text { to } 80,87, \\ 92,93,9999 \end{gathered}$	61	\times	
190	DO1 terminal function selection	$\begin{gathered} 0 \text { to } 8,10 \text { to } 16,20, \\ 25 \text { to } 27,30 \text { to } 37, \\ 39,40 \text { to } 44, \\ 96 \text { to } 9,100 \text { to } 108, \\ 110 \text { to } 116,120, \\ 125 \text { to } 127, \\ 130 \text { to } 137,139, \\ 140 \text { to } 144, \\ 196 \text { to } 199,9999 \end{gathered}$	0	190	RUN terminal function selection	0 to 8,10 to $20,22,25$ to 28 , 30 to 36,38 to $54,56,57,60$, 61, 63, 64, 68, 70, 79, 84, 85, 90 to 99,100 to 108,110 to 116 , 120, 122, 125 to 128,130 to 136 , 138 to 154, 156, 157, 160, 161, $163,164,168,170,179,184,185$, 190 to 199,200 to 208 , 300 to 308, 9999	0	\bigcirc	Terminals DO1, DO2, and DO3 correspond to terminals RUN, SU, and IPF respectively.
191	DO2 terminal function selection		1	191	SU terminal function selection		1	\bigcirc	
192	DO3 terminal function selection		2	192	IPF terminal function selection		2	\bigcirc	
195	A,B,C terminal function selection		99	195	ABC1 terminal function selection	0 to 8,10 to 20, 22, 25 to 28, 30 to 36,38 to $54,56,57,60,61$, $63,64,68,70,79,84,85,90,91$, 94 to 99,100 to 108,110 to 116 , 120, 122, 125 to 128,130 to 136 , 138 to 154, 156, 157, 160, 161, $163,164,168,170,179,184,185$, 190, 191, 194 to 199, 200 to 208, 300 to 308, 9999	99	\bigcirc	
232	Multi-speed setting (speed 8)	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	232	Multi-speed setting (speed 8)	0 to 590 Hz, 9999	9999	\times	For the FR-A800, use Pr. 144 to change the unit to " $\mathrm{r} / \mathrm{min}$ ", and then set the same as in the FR-V500 setting.
233	Multi-speed setting (speed 9)	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	233	Multi-speed setting (speed 9)	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
234	Multi-speed setting (speed 10)	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	234	Multi-speed setting (speed 10)	0 to 590 Hz , 9999	9999	\times	
235	Multi-speed setting (speed 11)	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	235	Multi-speed setting (speed 11)	0 to 590 Hz , 9999	9999	\times	
236	Multi-speed setting (speed 12)	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	236	Multi-speed setting (speed 12)	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
237	Multi-speed setting (speed 13)	0 to $3600 \mathrm{r} / \mathrm{min}$, 9999	9999	237	Multi-speed setting (speed 13)	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
238	Multi-speed setting (speed 14)	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	238	Multi-speed setting (speed 14)	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
239	Multi-speed setting (speed 15)	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	239	Multi-speed setting (speed 15)	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	
240	Soft-PWM setting	0, 1, 10, 11	10	240	Soft-PWM operation selection	0, 1	1	\times	Long wiring mode is not available for the FR-A800.
244	Cooling fan operation selection	0,1	0	244	Cooling fan operation selection	0, 1, 101 to 105	1	Δ	The initial values for both series differ.
250	Stop selection	0 to $100 \mathrm{~s}, 9999$	9999	250	Stop selection	$\begin{gathered} 0 \text { to } 100 \mathrm{~s}, \\ 1000 \text { to } 1100 \mathrm{~s}, \\ 8888,9999 \end{gathered}$	9999	\bigcirc	
251	Output phase failure protection selection	0, 1	1	251	Output phase loss protection selection	0, 1	1	\bigcirc	
252	Override bias	0 to 200\%	50\%	252	Override bias	0 to 200\%	50\%	\bigcirc	
253	Override gain	0 to 200\%	150\%	253	Override gain	0 to 200\%	150\%	\bigcirc	

FR-V500 parameter list				FR-A800 compatible parameter				Parameter setting	
Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Setting	Remarks
261	Power failure stop selection	0, 1	0	261	Power failure stop selection	0, 1, 2, 11, 12, 21, 22	0	\bigcirc	
262	Subtracted speed at deceleration start	0 to $600 \mathrm{r} / \mathrm{min}$	$90 \mathrm{r} / \mathrm{min}$	262	Subtracted frequency at deceleration start	0 to 20 Hz	3 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
263	Subtraction starting speed	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	$1500 \mathrm{r} / \mathrm{min}$	263	Subtraction starting frequency	0 to $590 \mathrm{~Hz}, 9999$	60 Hz	\times	
264	Power-failure deceleration time 1	0 to $3600 / 0$ to 360 s	5 s	264	Power-failure deceleration time 1	0 to 3600/360 s	5 s	\bigcirc	Changing Pr. 21 after setting this parameter will change the set value.
265	Power-failure deceleration time 2	0 to $3600 / 0$ to $360 \mathrm{~s}, 9999$	9999	265	Power-failure deceleration time 2	0 to 3600/360s, 9999	9999	\bigcirc	
266	Power-failure deceleration time switchover speed	0 to $3600 \mathrm{r} / \mathrm{min}$	$1500 \mathrm{r} / \mathrm{min}$	266	Power failure deceleration time switchover frequency	0 to 590 Hz	60 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
278	Brake opening speed	0 to $900 \mathrm{r} / \mathrm{min}$	$20 \mathrm{r} / \mathrm{min}$	278	Brake opening frequency	0 to 30 Hz	3 Hz	\times	
279	Brake opening current	0 to 200\%	130\%	279	Brake opening current	0 to 400\%	130\%	\bigcirc	
280	Brake opening current detection time	0 to 2 s	0.3 s	280	Brake opening current detection time	0 to 2 s	0.3 s	\bigcirc	
281	Brake operation time at start	0 to 5 s	0.3 s	281	Brake operation time at start	0 to 5 s	0.3 s	\bigcirc	
282	Brake operation speed	0 to $900 \mathrm{r} / \mathrm{min}$	$25 \mathrm{r} / \mathrm{min}$	282	Brake operation frequency	0 to 30 Hz	6 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
283	Brake operation time at stop	0 to 5 s	0.3 s	283	Brake operation time at stop	0 to 5 s	0.3 s	\bigcirc	
284	Deceleration detection function selection	0, 1	0	284	Deceleration detection function selection	0, 1	0	\bigcirc	
285	Overspeed detection speed	0 to $900 \mathrm{r} / \mathrm{min}, 9999$	9999	285	Overspeed detection frequency	0 to $30 \mathrm{~Hz}, 9999$	9999	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
286	Droop gain	0 to 100.0\%	0\%	286	Droop gain	0 to 100\%	0\%	\bigcirc	
287	Droop filter time constant	0.00 to 1.00 s	0.3 s	287	Droop filter time constant	0 to 1 s	0.3 s	\bigcirc	
288	Droop function activation selection	0, 1, 2	0	288	Droop function activation selection	0, 1, 2, 10, 11	0	\bigcirc	
342	E2PROM write selection	0, 1	0	342	Communication EEPROM write selection	0, 1	0	\bigcirc	
350	Stop position command selection	0, 1, 2, 3, 9999	9999	350	Stop position command selection	0, 1,9999	9999	\times	The specifications for both series differ. The choice for external stop position command is 16 -bit data only.
351	Orientation switchover speed	0 to $1000 \mathrm{r} / \mathrm{min}$	$200 \mathrm{r} / \mathrm{min}$	351	Orientation speed	0 to 30 Hz	2 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
356	Internal stop position command	0 to 16383	0	356	Internal stop position command	0 to 16383	0	\times	These parameters are used for adjustment. Adjust the
357	In-position zone	0 to 8192	11	357	Orientation in-position zone	0 to 255	5	\times	setting as required.
360	External position command selection	0, 1, 2 to 127	0	360	16-bit data selection	0 to 127	0	\times	The specifications for both series differ.
361	Position shift	0 to 16383	0	361	Position shift	0 to 16383	0	\times	Adjust the setting according to the target machine.
362	Orientation position loop gain	0.1 to 100	10	362	Orientation position loop gain	0.1 to 100	1	\times	This parameter is used for adjustment. Adjust the setting as required.
374	Overspeed detection level	0 to $4200 \mathrm{r} / \mathrm{min}$	3450 r/min	374	Overspeed detection level	0 to $590 \mathrm{~Hz}, 9999$	9999	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
380	Acceleration S pattern 1	0 to 50\%	0\%	380	Acceleration S-pattern 1	0 to 50\%	0\%	\bigcirc	
381	Deceleration S pattern 1	0 to 50\%	0\%	381	Deceleration S-pattern 1	0 to 50\%	0\%	\bigcirc	
382	Acceleration S pattern 2	0 to 50\%	0\%	382	Acceleration S-pattern 2	0 to 50\%	0\%	\bigcirc	
383	Deceleration S pattern 2	0 to 50\%	0\%	383	Deceleration S-pattern 2	0 to 50\%	0\%	\bigcirc	
393	Orientation selection	0, 1, 2, 10, 11, 12	0	393	Orientation selection	0, 1, 2, 10, 11, 12	0	\times	Machine end orientation is not available for the FR-A8AP (motor end).
396	Orientation speed gain (P term)	0 to 1000\%	60\%	396	Orientation speed gain (P term)	0 to 1000	60	\times	
397	Orientation speed integral time	0 to 20.0 s	0.333 s	397	Orientation speed integral time	0 to 20 s	0.333 s	\times	These parameters are used for adjustment. Adjust the
398	Orientation speed gain (D term)	0 to 100.0\%	1	398	Orientation speed gain (D term)	0 to 100	1	\times	setting as required.
399	Orientation deceleration ratio	0 to 1000	20	399	Orientation deceleration ratio	0 to 1000	20	\times	
408	Motor thermistor selection	0, 1	0	-	-	-	-	\times	Not available for the FR-A800.
419	Position command source selection	0, 1	0	419	Position command source selection	0, 2	0	Δ	The setting of position command by pulse train input (setting "1") is not available for the FR-A800. When pulse train input to the inverter is not possible, consider the use of the FR-A8AL.
420	Command pulse scaling factor numerator	0 to 32767	1	420	Command pulse scaling factor numerator	1 to 32767	1	\bigcirc	
421	Command pulse scaling factor denominator	0 to 32767	1	421	Command pulse multiplication denominator	1 to 32767	1	\bigcirc	
422	Position loop gain	0 to $150 \mathrm{~s}^{-1}$	$25 \mathrm{~s}^{-1}$	422	Position control gain	0 to $150 \mathrm{~s}^{-1}$	$25 \mathrm{~s}^{-1}$	\times	These parameters are used for adjustment. Adjust the setting as required.
423	Position feed forward gain	0 to 100\%	0\%	423	Position feed forward gain	0 to 100\%	0\%	\times	
424	Position command acceleration/ deceleration time constant	0 to 50 s	0 s	424	Position command acceleration/ deceleration time constant	0 to 50 s	0 s	\times	
425	Position feed forward command filter	0 to 5 s	0 s	425	Position feed forward command filter	0 to 5 s	0 s	\times	

FR-V500 parameter list				FR-A800 compatible parameter				Parameter setting	
Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Setting	Remarks
505	Speed setting reference	1 to $3600 \mathrm{r} / \mathrm{min}$	1500 r/min	505	Speed setting reference	1 to 590 Hz	60 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
800	Control system selection	0 to 5, 9, 20	0	800	Control method selection	0 to 6, 9 to 14, 20, 100 to 106, 109 to 114	20	Δ	The initial values for both series differ. When Pr. 862 of the FR-V500 is set to " 0 ", set this parameter after adding 100 to the Pr. 800 setting of the FR-V500. For other than the above, keep the setting the same as in the FR-V500.
801	Torque characteristic selection	0,1	1	801	Output limit level	0 to 400\%, 9999	9999	\times	This parameter's function is different from that in the FR-V500. For the FR-A800, the torque current command can be limited when the torque is set during torque control.
802	Pre-excitation selection	0, 1	0	802	Pre-excitation selection	0, 1	0	\bigcirc	
803	Constant power range torque characteristic selection	0, 1	0	803	Constant output range torque characteristic selection	0, 1, 2, 10, 11	0	\bigcirc	
804	Torque command source selection	0 to 6	0	804	Torque command source selection	0, 1, 3 to 6	0	\times	For the torque command during torque control, the torque is limited by the method selected in Pr. 810 of the FR-A800. This function cannot be available in the FR-V500. To disable this function in FR-A800, set Pr. 801 = "400" and Pr. 803 = " 2 ".
805	Torque command source (RAM)	600 to 1400\%	1000\%	805	Torque command value (RAM)	600 to 1400\%	1000\%	\times	Setting not required
806	Torque command source (RAM, E²PROM)	600 to 1400\%	1000\%	806	Torque command value (RAM, EEPROM)	600 to 1400\%	1000\%	\bigcirc	
807	Speed limit selection	0, 1, 2	0	807	Speed limit selection	0, 1, 2	0	\bigcirc	
808	Forward rotation speed limit	0 to $3600 \mathrm{r} / \mathrm{min}$	$1500 \mathrm{r} / \mathrm{min}$	808	Forward rotation speed limit/speed limit	0 to 400 Hz	60 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
809	Reverse rotation speed limit	0 to $3600 \mathrm{r} / \mathrm{min}, 9999$	9999	809	Reverse rotation speed limit/reverse-side speed limit	0 to $400 \mathrm{~Hz}, 9999$	9999	\times	
810	Torque restriction input method selection	0, 1	0	810	Torque limit input method selection	0, 1	0	\bigcirc	
811	Set resolution switchover	0, 1, 10, 11	0	811	Set resolution switchover	0, 1, 10, 11	0	\bigcirc	
812	Torque limit level (regeneration)	0 to 400\%, 9999	9999	812	Torque limit level (regeneration)	0 to 400\%, 9999	9999	\times	These parameters are used for adjustment. Adjust the setting as required.
813	Torque limit level (3 quadrant)	0 to 400\%, 9999	9999	813	Torque limit level (3rd quadrant)	0 to 400\%, 9999	9999	\times	
814	Torque limit level (4 quadrant)	0 to 400\%, 9999	9999	814	Torque limit level (4th quadrant)	0 to 400\%, 9999	9999	\times	
815	Torque limit level 2	0 to 400\%, 9999	9999	815	Torque limit level 2	0 to 400\%, 9999	9999	\times	
816	Acceleration torque limit level	0 to 400\%, 9999	9999	816	Torque limit level during acceleration	0 to 400\%, 9999	9999	\times	
817	Deceleration torque limit level	0 to 400\%, 9999	9999	817	Torque limit level during deceleration	0 to 400\%, 9999	9999	\times	
818	Easy gain tuning response level setting	1 to 15	2	818	Easy gain tuning response level setting	1 to 15	2	\times	
819	Easy gain tuning selection	0, 1, 2	0	819	Easy gain tuning selection	0, 1, 2	0	\bigcirc	
820	Speed control P gain 1	0 to 1000\%	60\%	820	Speed control P gain 1	0 to 1000\%	60\%	\times	These parameters are used for adjustment. Adjust the setting as required.
821	Speed control integral time 1	0 to 20 s	0.333 s	821	Speed control integral time 1	0 to 20 s	0.333 s	\times	
822	Speed setting filter 1	0 to 5 s	0 s	822	Speed setting filter 1	0 to $5 \mathrm{~s}, 9999$	9999	\times	
823	Speed detection filter 1	0 to 0.1 s	0.001 s	823	Speed detection filter 1	0 to 0.1 s	0.001 s	\times	
824	Torque control P gain 1	0 to 200\%	100\%	824	Torque control P gain 1 (current loop proportional gain)	0 to 500\%	100\%	\times	
825	Torque control integral time 1	0 to 500 ms	5 ms	825	Torque control integral time 1 (current loop integral time)	0 to 500 ms	5 ms	\times	
826	Torque setting filter 1	0 to 5 s	0 s	826	Torque setting filter 1	0 to $5 \mathrm{~s}, 9999$	9999	\times	
827	Torque detection filter 1	0 to 0.1 s	0 s	827	Torque detection filter 1	0 to 0.1 s	0 s	\times	
828	Model speed control gain	0 to 1000\%	60\%	828	Model speed control gain	0 to 1000\%	60\%	\times	
830	Speed control P gain 2	0 to 1000\%, 9999	9999	830	Speed control P gain 2	0 to 1000\%, 9999	9999	\times	
831	Speed control integral time 2	0 to $20 \mathrm{~s}, 9999$	9999	831	Speed control integral time 2	0 to $20 \mathrm{~s}, 9999$	9999	\times	
832	Speed setting filter 2	0 to $5 \mathrm{~s}, 9999$	9999	832	Speed setting filter 2	0 to $5 \mathrm{~s}, 9999$	9999	\times	
833	Speed detection filter 2	0 to $0.1 \mathrm{~s}, 9999$	9999	833	Speed detection filter 2	0 to $0.1 \mathrm{~s}, 9999$	9999	\times	
834	Torque control P gain 2	0 to 200\%, 9999	9999	834	Torque control P gain 2	0 to 500\%, 9999	9999	\times	
835	Torque control integral time 2	0 to $500 \mathrm{~ms}, 9999$	9999	835	Torque control integral time 2	0 to $500 \mathrm{~ms}, 9999$	9999	\times	
836	Torque setting filter 2	0 to $5 \mathrm{~s}, 9999$	9999	836	Torque setting filter 2	0 to $5 \mathrm{~s}, 9999$	9999	\times	
837	Torque detection filter 2	0 to 0.1 s, 9999	9999	837	Torque detection filter 2	0 to $0.1 \mathrm{~s}, 9999$	9999	\times	

FR-V500 parameter list				FR-A800 compatible parameter				Parameter setting	
Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Setting	Remarks
840	Torque bias selection	0 to 3, 9999	9999	840	Torque bias selection	0 to 3, 24, 25, 9999	9999	\bigcirc	The setting is available only when the FR-A8AP or the FR-A8AL is mounted.
841	Torque bias 1	600 to 1400\%, 9999	9999	841	Torque bias 1	600 to 1400\%, 9999	9999	\times	These parameters are used for adjustment. Set the parameters as required.
842	Torque bias 2	600 to 1400%, 9999	9999	842	Torque bias 2	600 to 1400\%, 9999	9999	\times	
843	Torque bias 3	600 to 1400%, 9999	9999	843	Torque bias 3	600 to 1400\%, 9999	9999	\times	
844	Torque bias filter	0 to 5s, 9999	9999	844	Torque bias filter	0 to $5 \mathrm{~s}, 9999$	9999	\times	
845	Torque bias operation time	0 to $5 \mathrm{~s}, 9999$	9999	845	Torque bias operation time	0 to $5 \mathrm{~s}, 9999$	9999	\times	
846	Torque bias balance compensation	0 to $10 \mathrm{~V}, 9999$	9999	846	Torque bias balance compensation	0 to $10 \mathrm{~V}, 9999$	9999	\times	
847	Fall-time torque bias terminal 3 bias	0 to 400\%, 9999	9999	847	Fall-time torque bias terminal 1 bias	0 to 400\%, 9999	9999	\times	
848	Fall-time torque bias terminal 3 gain	0 to 400\%, 9999	9999	848	Fall-time torque bias terminal 1 gain	0 to 400\%, 9999	9999	\times	
849	Analog input offset adjustment	0 to 200\%	100\%	849	Analog input offset adjustment	0 to 200\%	100\%	\bigcirc	
851	Number of encoder pulses	0 to 4096	2048	369	Number of encoder pulses	0 to 4096	1024	\bigcirc	The setting is available only when the FR-A8AP or the FR-A8AL is mounted. Keep the setting the same as in the FR-V500.
852	Encoder rotation direction	0, 1	1	359	Encoder rotation direction	0, 1, 100, 101	1	\bigcirc	
854	Excitation ratio	0 to 100\%	100\%	854	Excitation ratio	0 to 100\%	100\%	\bigcirc	
859	Torque current	0 to, 9999	9999	859	Torque current/Rated PM motor current	0 to $500 \mathrm{~A}, 9999$ (55 K or lower) 0 to $3000 \mathrm{~A}, 9999$ (75 K or higher)	9999	\times	Connect the motor, and perform auto tuning.
862	Notch filter frequency	$\begin{aligned} & 0 \text { to } 31 \text { (V500) } \\ & 0 \text { to } 60 \text { (V500L) } \end{aligned}$	0	1003	Notch filter frequency	0,8 to 1250 Hz	0	\times	Notch frequency differs between the FR-V500 and the FR-A800. For the setting values, refer to section 4.2.
863	Notch filter depth	0 to 3	0	1004	Notch filter depth	0 to 3	0	Δ	
864	Torque detection	0 to 400\%	150\%	864	Torque detection	0 to 400\%	150\%	\bigcirc	
865	Low speed detection	0 to $3600 \mathrm{r} / \mathrm{min}$	$45 \mathrm{r} / \mathrm{min}$	865	Low speed detection	0 to 590 Hz	1.5 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
866	Torque monitoring reference	0 to 400\%	150\%	866	Torque monitoring reference	0 to 400\%	150\%	\bigcirc	
867	DA1 output filter	0 to 5 s	0.05 s	867	AM output filter	0 to 5 s	0.01 s	Δ	
868	Terminal 1 function assignment	0, 1, 2, 5, 9999	0	868	Terminal 1 function assignment	0 to 6, 9999	0	+	When using terminal 3 of the FR-V500 for torque limit input, use terminal 1 of the FR-A800 and set Pr.868="4". (Not required when using terminal 4 as an alternative to terminal 1.) When using terminal 3 of the FR-V500 for torque bias input, use terminal 1 of the FR-A800 and set Pr.868="6". When using terminal 3 of the FR-V500 for torque command input, use terminal 1 of the FR-A800 and set Pr. $868=$ " 3 or 4 ".
870	Speed deviation level	0 to $1500 \mathrm{r} / \mathrm{min}, 9999$	9999	285	Overspeed detection frequency (Speed deviation excess detection frequency)	0 to $30 \mathrm{~Hz}, 9999$	9999	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
871	Speed deviation time	0 to 100 s	12 s	853	Speed deviation time	0 to 100 s	1 s	Δ	
873	Speed limit	0 to $3600 \mathrm{r} / \mathrm{min}$	$600 \mathrm{r} / \mathrm{min}$	873	Speed limit	0 to 400 Hz	20 Hz	\times	For the FR-A800, use Pr. 144 to change the unit to "r/min", and then set the same as in the FR-V500 setting.
874	OLT level setting	0 to 200\%	150\%	874	OLT level setting	0 to 400\%	150\%	\bigcirc	
875	Fault definition	0,1	0	875	Fault definition	0, 1	0	\bigcirc	
876	Thermal relay protector input	0, 1	1	-	-	-	-	-	To use a thermal protector, use any of input terminals to assign OH signal (external thermal relay input). Note that a resistor is required for connection. For the wiring method, refer to the Instruction Manual of the FR-A800.

FR-V500 parameter list				FR-A800 compatible parameter				Parameter setting	
Pr.	Name	Setting range	Initial value	Pr.	Name	Setting range	Initial value	Setting	Remarks
877	Speed feed forward control/ model adaptive speed control selection	0, 1, 2	0	877	Speed feed forward control/ model adaptive speed control selection	0, 1, 2	0	\bigcirc	
878	Speed feed forward filter	0 to 1 s	0 s	878	Speed feed forward filter	0 to 1s	0 s	\times	These parameters are used for adjustment. Adjust the setting as required.
879	Speed feed forward torque limit	0 to 400\%	150\%	879	Speed feed forward torque limit	0 to 400\%	150\%	\times	
880	Load inertia ratio	0, 1 to 200 times	7	880	Load inertia ratio	0 to 200 times	7	\bigcirc	
881	Speed feed forward gain	0 to 1000\%	0\%	881	Speed feed forward gain	0 to 1000\%	0\%	\times	This parameter is used for adjustment. Adjust the setting as required.
890	Maintenance output setting time	0 to 9998, 9999	9999	504	Maintenance timer 1 warning output set time	0 to 9998, 9999	9999	\bigcirc	
891	Maintenance output timer	0 to 9998	0	503	Maintenance timer 1	0 (1 to 9998)	0	\bigcirc	
892	Maintenance output signal clear	0	0	-	-	-	-	-	To reset maintenance timer or to clear maintenance timer output signal, write "0" in Pr. 503.
900	DA1 terminal calibration	-	-	$\begin{gathered} \hline \mathrm{C0} \\ (900) \\ \hline \end{gathered}$	FM/CA terminal calibration	-	-	\times	Calibrate the parameter as required.
901	DA2 terminal calibration	-	-	$\begin{array}{cc} \text { C1 } \\ (901) \end{array}$	AM terminal calibration	-	-	\times	Calibrate the parameter as required.
902		0 to $10 \mathrm{~V}, 0$ to $3600 \mathrm{r} / \mathrm{min}$	$0 \mathrm{~V}, 0 \mathrm{r} / \mathrm{min}$	$\begin{gathered} \text { C2 } \\ (902) \end{gathered}$	Terminal 2 frequency setting bias frequency	0 to 590 Hz	0 Hz	\times	Set the parameter as required. For the details, refer to section "5.12.5 Frequency setting voltage (current) bias and gain" and "5.12.6 Bias and gain for torque (magnetic flux) and set voltage (current)" of the Instruction Manual (Detailed). Terminal 4: When the torque limit is set. When terminal 1 is not used, torque command/limit can be performed by terminal 1. In this case, adjust bias/gain by C16 to C19. When terminal 1 is used, perform the torque command by option, FR-A8AZ.
902	Speed setting terminal 2 bias	0 to $10 \mathrm{~V}, 0$ to $3600 \mathrm{r} / \mathrm{min}$	ov, r r/min	$\begin{gathered} \text { C3 } \\ (902) \\ \hline \end{gathered}$	Terminal 2 frequency setting bias	0 to 300\%	0\%	\times	
903	Speed setting terminal 2 gain	0 to $10 \mathrm{~V}, 0$ to $3600 \mathrm{r} / \mathrm{min}$	$10 \mathrm{~V}, 1500 \mathrm{r} / \mathrm{min}$	$\begin{aligned} & 125 \\ & 125 \\ & (903) \\ & \hline \end{aligned}$	Terminal 2 frequency setting gain frequency	0 to 590 Hz	60 Hz	\times	
				$\begin{gathered} \text { C4 } \\ (903) \\ \hline \end{gathered}$	Terminal 2 frequency setting gain	0 to 300\%	100\%	\times	
904	Torque command terminal 3 bias	0 to $10 \mathrm{~V}, 0$ to 400\%	$0 \mathrm{~V}, 0 \%$	$\begin{gathered} C 5 \\ \text { C5 } \\ (904) \\ \hline \end{gathered}$	Terminal 4 frequency setting bias frequency	0 to 590 Hz	0 Hz	\times	
				$\begin{gathered} \text { C6 } \\ (904) \\ \hline \end{gathered}$	Terminal 4 frequency setting bias	0 to 300\%	20\%	\times	
905	Torque command terminal 3 gain	0 to $10 \mathrm{~V}, 0$ to 400\%	10 V, 150\%	$\begin{array}{r} 126 \\ (905) \\ \hline \end{array}$	Terminal 4 frequency setting gain frequency	0 to 590 Hz	60 Hz	\times	
				$\begin{gathered} C 7 \\ (905) \end{gathered}$	Terminal 4 frequency setting gain	0 to 300\%	100\%	\times	
917	Terminal 1 bias (speed)	0 to $10 \mathrm{~V}, 0$ to $3600 \mathrm{r} / \mathrm{min}$	$0 \mathrm{~V}, 0 \mathrm{r} / \mathrm{min}$	$\begin{gathered} \text { C12 } \\ (917) \end{gathered}$	Terminal 1 bias frequency (speed)	0 to 590 Hz	0 Hz	\times	
				$\begin{array}{r} \mathrm{C} 13 \\ (917) \\ \hline \end{array}$	Terminal 1 bias (speed)	0 to 300\%	0\%	\times	
918	Terminal 1 gain (speed)	0 to $10 \mathrm{~V}, 0$ to $3600 \mathrm{r} / \mathrm{min}$	$10 \mathrm{~V}, 1500 \mathrm{r} / \mathrm{min}$	$\begin{aligned} & \mathrm{C} 14 \\ & (918) \\ & \hline \end{aligned}$	Terminal 1 gain frequency (speed)	0 to 590 Hz	60 Hz	\times	
				$\begin{aligned} & \text { C15 } \\ & (918) \\ & \hline \end{aligned}$	Terminal 1 gain (speed)	0 to 300\%	100\%	\times	
919	Terminal 1 bias (torque/magnetic flux)	0 to $10 \mathrm{~V}, 0$ to 400\%	$0 \mathrm{~V}, 0 \%$	$\begin{array}{r} \text { C16 } \\ (919) \\ \hline \end{array}$	Terminal 1 bias command (torque/magnetic flux)	0 to 400\%	0\%	\times	
				$\begin{gathered} \text { C17 } \\ (919) \\ \hline \end{gathered}$	Terminal 1 bias (torque/magnetic flux)	0 to 300\%	0\%	\times	
920	Terminal 1 gain (torque/magnetic flux)	0 to $10 \mathrm{~V}, 0$ to 400\%	10 V, 150\%	$\begin{aligned} & \mathrm{C} 18 \\ & (920) \\ & \hline \end{aligned}$	Terminal 1 gain command (torque/magnetic flux)	0 to 400\%	150\%	\times	
				$\begin{gathered} \text { C19 } \\ (920) \end{gathered}$	Terminal 1 gain (torque/magnetic flux)	0 to 300\%	100\%	\times	
990	PU buzzer control	0, 1	1	990	PU buzzer control	0, 1	1	\bigcirc	
991	PU contrast adjustment	0 to 63	58	991	PU contrast adjustment	0 to 63	58	\bigcirc	

4.2. Notch Filter Setting

The notch filter setting and the notch frequency differ between the FR-V500(L) and the FR-A800. In Pr. 1003 of the FR-A800, set a value corresponding to the Pr. 862 setting of the FR-V500(L) as shown in the table below. Adjust the setting again as required.

FR-V500(L) setting		FR-A800 setting	Remarks
$\begin{aligned} & \text { Pr. } 862 \\ & \text { setting } \end{aligned}$	Notch frequency (Hz)	Pr. 1003 setting (Notch frequency (Hz))	
0	Invalid	Invalid	
1	1125.0	1125	The fast-response operation must be set. (Set Pr. 800 by adding 100 to the setting value of the FR-V500.)
2	562.5	563	
3	375.0	375	
4	281.3	281	
5	225.0	225	
6	187.5	188	
7	160.7	161	
8	140.6	141	
9	125.0	125	
10	112.5	113	
11	102.3	102	
12	93.8	94	
13	86.5	87	
14	80.4	80	
15	75.0	75	
16	70.3	70	
17	66.2	66	
18	62.5	63	
19	59.2	59	
20	56.3	56	
21	53.6	54	
22	51.1	51	
23	48.9	49	
24	46.9	47	
25	45.0	45	
26	43.3	43	
27	41.7	42	
28	40.2	40	
29	38.8	39	
30	37.5	38	
31	36.3	36	The setting range of the FR-V500 is "0 to 31".

FR-V500L setting		FR-A800 setting	Remarks
Pr. 862 setting	Notch frequency (Hz)	Pr. 1003 setting (Notch frequency (Hz))	
32	35.2	35	
33	34.1	54	
34	33.1	33	
35	32.1	32	
36	31.3	31	
37	30.4	30	
38	29.6	30	
39	28.8	29	
40	28.1	28	
41	27.4	27	
42	26.8	27	
43	26.2	26	
44	25.6	26	
45	25.0	25	
46	24.5	25	
47	23.9	24	
48	23.4	23	
49	23.0	23	
50	22.5	23	
51	22.1	22	
52	21.6	22	
53	21.2	21	
54	20.8	21	
55	20.5	21	
56	20.1	20	
57	19.7	20	
58	19.4	19	
59	19.1	19	
60	18.8	19	The setting range of the FR-V500L is " 0 to 60".

4.3. Compatibility of the Terminal Response Speed

The response of the input/output terminals of the FR-A800 series is improved compared to the FR-V500 series. Operation timing of the device may differ depending on the usage.
In this case, set Pr. 289 (Inverter output terminal filter) and Pr. 699 (Input terminal filter) to adjust the terminal response time. Set 5 to 8 ms in Pr. 289 and Pr. 699 and adjust according to the system.

5. OPTION

The following table shows which FR-V500(L) series options are compatible with the FR-A800 series inverters and their corresponding A800 series options.

Name		Option model	
		FR-V500(L)	FR-A800 (equipped with FR-A8AP or A8AL)
	12-bit digital input	FR-A5AX	FR-A8AX (16 bits)
	16-bit digital input	FR-V5AH	FR-A8AX
	High-resolution analog input function (16 bits) Thermistor interface Additional contact input	FR-V5AX	FR-A8AZ Inverter input terminals (Binary 6 bits not supported, number of terminals restricted)
	Digital output Additional analog output (10 bits)	FR-A5AY	FR-A8AY
	Relay output (3)	FR-A5AR	FR-A8AR or terminals A2, B2, and C2 on the inverter.
	Additional open collector output Encoder pulse frequency dividing output	FR-V5AY	FR-A8AY FR-A8TP or FR-A8AL
	Machine end orientation Pulse train input	FR-A5AP, T-PLG50, T-PLG51 FR-V5AM	Orientation control is available using the FR-A8TP. (FR-A8TP (motor end) and A8AP (machine end) required.) Simple orientation control is available using the FR-A8AL. The pulse train input is already a built-in of the inverter.
	Position control Pulse train torque command	FR-V5AP	FR-A8AL
	Torque setting input	Built-in function of the inverter (terminal 3 on the unit)	Built-in function of the inverter (terminal 1 can be used if it is available) or FR-A8AZ
	Computer link Relay output (1)	FR-A5NR	Built-in function of the inverter (RS-485 terminals, two relay output terminals)
	Profibus-DP	FR-A5NPA	FR-A8NP
	Device Net	FR-A5ND	FR-A8ND
	CC-Link	FR-A5NC	FR-A8NC
	Parameter unit	FR-PU04	Not available. FR-PU07 is available.
	Parameter unit connection cable	FR-CB201, 203, 205	Compatible
	Encoder cable (for dedicated motor)	FR-V5CBL	FR-V7CBL Cables need to be modified to use the FR-V5CBL.
	Intercompatibility attachment	FR-AAT, FR-A5AT	FR-AAT, FR-A5AT
	EMC Directive compliant noise filter	SF	Built-in function of the inverter (EN61800-3 2nd Environment compatible)
	Surge voltage suppression filter	FR-ASF-H	Select the model according to the motor capacity. These options are compatible. If replacing the reactor, use FR-HEL-(H)(*2) and FR-HAL-(H).
	Power factor improving DC reactor	FR-BEL-(H)	
	Power factor improving AC reactor	FR-BAL-(H), MT-BAL-(H)	
	Radio noise filter	FR-BIF-(H)	Compatible
	Line noise filter	FR-BSF01, FR-BLF	Compatible
	Brake resistor	FR-ABR-(H)	Select the model according to the FR-A800 inverter capacity. *1
	BU type brake unit	BU1500 to $15 \mathrm{~K}, \mathrm{H} 7.5 \mathrm{~K}$ to 30K	Select the model according to the required braking torque. The MT-BU5 is not supported.
	Brake unit	FR-BU-(H), FR-BU2 MT-BU5	
	Resistor unit	FR-BR-(H), MT-BR5-(H)	Select the model according to the FR-A800 inverter capacity.
	FR-CV type power regeneration common converter	FR-CV-(H)7.5K(-AT) to 55K	Select the model according to the FR-A800 inverter capacity.
	Stand-alone reactor dedicated for the FR-CV	FR-CVL-(H)7.5K to 55K	
	FR-HC type high power factor converter	$\begin{aligned} & \text { FR-HC-(H), MT-HC-(H) } \\ & \text { FR-HC2-(H) } \end{aligned}$	

Note: Up to three plug-in options can be attached to the FR-A800 series. However, to perform vector control, the plug-in option FR-A8AP or FR-A8AL for encoder connection is required.

Therefore, up to two options other than the encoder option can be connected.
If the FR-A8AL and the FR-A8AP are installed together, the FR-A8AP is disabled.
*1: The existing brake resistor can be used if the regenerative driving load is not changed.
For some capacity inverters, the crimp terminals need to be changed according to the sizes of the terminal screws for P and PR .
*2: When FR-RC-(H) or MT-RC-(H) is used, use FR-BAL-(H) or MT-BAL-(H).

Name		Option model	
		FR-V500(L)	FR-A800
	Manual controller	FR-AX	Compatible
	DC tach. follower	FR-AL	Compatible
	Three speed selector	FR-AT	Compatible
	Motorized speed setter	FR-FK	Compatible
	Ratio setter	FR-FH	Compatible
	Speed detector	FR-FP	Compatible
	Master controller	FR-FG	Compatible
	Soft starter	FR-FC	Compatible
	Deviation detector	FR-FD	Compatible
	Preamplifier	FR-FA	Compatible
$\begin{aligned} & \frac{\varrho}{0} \\ & \stackrel{ \pm}{0} \end{aligned}$	Pilot generator	QVAH-10	Compatible
	Deviation sensor	YVGC-500W-NS	Compatible
	Frequency setting potentiometer	WA2W $1 \mathrm{k} \Omega$	Compatible
	Frequency meter	YM206NRI 1 mA	Compatible
	Calibration resistor	RV24YN $10 \mathrm{k} \Omega$	Compatible

Instructions when replacing the FR-V500(L) to the FR-A800

* Change the connections as follows:
- Use terminal AM of the FR-A800 instead of terminal DA2 of the FR-V500(L).

Only one analog terminal (AM) is available. When additional analog output terminals are required, use the plug-in option FR-A8AZ or FR-A8AY.
The response speed differs by terminal.

- When the automatic restart after instantaneous power failure is enabled (Pr. $57 \neq$ " 9999 ") for the FR-V500(L), assign the CS signal to any of the input terminals, and short the CS signal terminal and the SD terminal for the FR-A800.
- When a pulse train input of the FR-A5AP is being used in the FR-V500(L), use the JOG terminal of the inverter body as a pulse train input terminal for the FR-A800 inverter. Also, note that a resistor is required for connection.
- When a thermal protector is connected (Pr.876="0"), assign the OH signal to any of the input terminals and connect it. Also, note that a resistor is required for connection.
- For torque control of terminal 3 , the negative command value is an absolute value. Note that the negative command value input through terminal 1 of FR-A800 is regarded as " 0 ".
- When a pulse train input of the FR-A5AP is being used in the FR-V500(L), use the JOG terminal of the inverter body as a pulse train input terminal for the FR-A800 inverter. Also, note that a resistor is required for connection.
- When a thermal protector is connected (Pr. $876=00$ "), assign the OH signal to any of the input terminals and connect it. Also, note that a resistor is required for connection.
- When PID control is exercised by entering the measured value signal (Pr.128="30, 31"), change the terminal for the measured value signal from terminal 1 to terminal 4 . In addition, as terminal 4 is for a current input in the initial setting, any of the following is required.
1: Change the setting to a voltage input.
2: Set Pr.267="2", and turn OFF switch 1 on the board to change the terminal 4 input to 0 to 10 V input.
- When the FR-A5AX is used to enter the stop position command under orientation control (Pr.350="2", Pr.360="1"), and the number of encoder pulses (Pr.369) is 2048 or 4096, perform wiring to the FR-A8AX as follows.
1: When the number of encoder pulses (Pr.369)=2048
Increase the terminal number by one, for example from X0 to $\mathrm{X} 1, \ldots$. , from X11 to X 12 . (X0 is always open.)
2: When the number of encoder pulses (Pr.369)=4096
Increase the terminal number by two, for example from X0 to X2,, from X11 to X13. (X0 and X1 are always open.)
- When a relay output with the FR-A5NR is available for the FR-V500(L), use terminal ABC2 for the FR-A800 inverter.
- When the relay terminals of the FR-A5NR are used for remote output (Pr.496, 497), change the bit assignment as follows.
Pr. 497 bit $10 \rightarrow$ Pr. 496 bit 6
- The total number of additional contact input terminals on the inverter and the FR-V5AX is 13 for the FR-V500 and 11 (12 when OH is not used) for the FR-A800.
- T-TRC50 is the USB memory device of the FR-A800 inverter.
- When the FR-V5NS was used, use FR-A800 (SSCNET III/H) and Motion controller.
- When the FR-V5NE was used, use FR-A800-E and FR Configurator2. Check the functions of the software in advance.
* Enabling the built-in EMC filter increases leakage current.

	Capacitive filter (Radio noise filter)	Input side common mode choke (Line noise filter)	DC reactor
55 K or lower	Standard (built-in)	Standard (built-in)	Option (sold separately)
75 K or higher	Standard (built-in)	Option (sold separately)	Standard (built-in)

The EMC filter is initially set to disabled (OFF). For the 200 V class 0.4 K and 0.75 K , the EMC filter is always enabled as the leakage current is small. (The filter ON/OFF connector is not provided.)
The input side common mode choke, which is built in the 55 K or lower inverter, is always enabled regardless of the EMC filter ON/OFF connector setting.

- Main circuit wire size

Select the size according to the FR-A800 inverter.
Note that the existing wire can be used if the load conditions are not changed. For some capacity inverters, the crimp terminals need to be changed according to the sizes of the screws for main circuit terminals.

- Breaker (MCCB) and magnetic contactor (MC)

Select the model according to the FR-A800 inverter.
Note that the existing breaker (MCCB) and magnetic contactor (MC) can be used if the load conditions are not changed.

Differences between the FR-V500(L) series and the FR-A800 series are as follows.

- The FR-A800 series inverter has a wider capacity range.
$\left\{\begin{array}{l}\mathrm{V} 520: 1.5 \mathrm{~kW} \text { to } 55 \mathrm{~kW} \\ \mathrm{~V} 540: 1.5 \mathrm{~kW} \text { to } 55 \mathrm{~kW} \\ \mathrm{~V} 520 \mathrm{~L}: 75 \mathrm{~kW} \\ \mathrm{~V} 540 \mathrm{~L}: 75 \mathrm{~kW} \text { to } 250 \mathrm{~kW}\end{array}\right\}$

A820: 0.4 kW to 90 kW
A840: 0.4 kW to 280 kW
For vector control, select a one or two-rank higher inverter capacity of the FR-A800 series against the motor output (kW).

- For the FR-A800 series, more various control methods are selectable according to the purpose.
\(\left.$$
\begin{array}{ll}\text { FR-V500(L) } \\
\text { Vector control } \\
\text { Sensorless vector control } \\
& \square \\
& \begin{array}{l}\text { FR-A800 } \\
\text { Vector control }\end{array}
$$

Optimum excitation control

PM sensorless vector control

Sensorless vector control\end{array}\right\}\)| Advanced magnetic flux vector control |
| :--- |
| |
| |

(Useful for trial operating the inverter before any setting.)

- Offline auto tuning

Same as the FR-V500(L), the FR-A800 has two modes for the offline auto tuning: tuning by rotating the motor and tuning without rotating the motor.
High-accuracy tuning is achieved even without rotating the motor.
\Rightarrow Suitable for tuning when a motor and a load machine cannot be separated.

- For the FR-V500(L), encoder signal loss detection (E.ECT) is enabled. For the FR-A800, set Pr. 376 or Pr. 855 as required.

