TECHNICAL BULLETIN [1/54]
FA-A-0060-C
Procedures for Replacing Positioning Module AD71 with QD75Date of Issue
April 2009 (Ver. C: July 2019)

- Relevant Models
QD75P1N, QD75P2N, QD75P4N, QD75D1N, QD75D2N, QD75D4N
Thank you for your continued support of Mitsubishi Electric programmable controllers, MELSEC series. This bulletin is written for those intending to replace the AD71/A1SD71/AD71S2/AD71S7/A1SD71-S2/A1SD71-S7 positioning module with the QD75P1N/QD75P2N/QD75P4N/QD75D1N/QD75D2N/QD75D4N, and includes the relevant information (such as specification changes), method of replacement and recommended equipment.
The AD71/A1SD71/AD71S2/AD71S7/A1SD71-S2/A1SD71-S7 can also be replaced with the made-to-order models, QD75P1/QD75P2/QD75P4/QD75D1/QD75D2/QD75D4.
For differences between QD75PD/QD75D and QD75PロN/QD75DCN, refer to the following technical bulletin. News on the replacement models for MELSEC-Q series positioning modules FA-A-0115
CONTENTS
1 ABBREVIATIONS 2
2 OVERVIEW OF COMPARISON BETWEEN AD71 AND QD75 2
3 FUNCTIONAL COMPARISON BETWEEN AD71 AND QD75 3
3.1 List of Functional Comparisons 3
3.2 Replacement Procedure Flowchart 4
4 REWIRING 5
4.1 Comparison Between AD71 and QD75 for Connecting the Signal Cable 5
4.2 Servo Amplifier Connection Examples 6
5 PARAMETER SETTINGS 11
5.1 QD75 Parameter Settings (Comparison of Parameters Between AD71 and QD75) 11
5.2 QD75 Zero Point Return Parameter Settings 15
6 POSITIONING DATA SETTINGS 17
7 DATA FOR POSITIONING CONTROL START 20
8 OS DATA AREAS (INCLUDING MONITOR INFORMATION) 24
9 POSITIONING CONTROL PROGRAMS 25
9.1 Differences in I/O Signals 25
9.2 Precautions for Replacing AD71 with QD75 25
9.3 Programming Restrictions 27
9.4 Program Examples for QD75 27
10 QD75 TEST OPERATION 39
11 LISTS OF QD75 BUFFER MEMORY ADDRESSES 40
11.1 Parameters [Pr.] 40
Positioning parameters 40
OPR parameters 43
11.2 Monitor Data [Md.] 44
11.3 Control Data [Cd.] 51
11.4 Positioning Data [Da.] 52
REVISIONS 54
MITSUBISHI ELECTRIC CORPORATION

1 ABBREVIATIONS

In this bulletin，the following abbreviations are used to refer to the model names of modules．

Abbreviation	Model name
AD71	AD71，AD71S1，AD71S2，AD71S7，A1SD71－S2，A1SD71－S7
AD71S2	AD71S2，A1SD71－S2
AD71S7	AD71S7，A1SD71－S7
QD75＊1 $^{\text {QD75PロN }}$＊1	QD75P1N，QD75P2N，QD75P4N，QD75D1N，QD75D2N，QD75D4N
QD75DロN $^{* 1}$	QD75P1N，QD75P2N，QD75P4N

＊1 The QD75 has two types，namely QD75PロN and QD75DロN，according to the output types of command pulses．Choose between the two types according to the output type of the existing AD71．（ \square refers to the number of axes．）
QD75PロN：Open collector output
QD75DロN：Differential driver output
In addition，this bulletin uses the model names of＂QD75PDN＂and＂QD75DロN＂when explanations unique to each module are necessary because of the differences（such as specifications）between the modules．

2 OVERVIEW OF COMPARISON BETWEEN AD71 AND QD75

The performance of the QD75 is improved compared to the AD71，as explained below：

Reduced start processing time

The start time is reduced by speeding up the positioning start processing．

Module	Independent positioning	2－axis linear interpolation positioning
AD71	58 ms	94 ms
QD75	1.5 ms	1.5 ms

Easier maintenance

－Positioning data and parameter settings are stored in the module flash ROM；therefore data can be retained without the need for batteries．
－The history function enables checking of historical data such as start，errors or warning data．
－The module error history function enables checking of errors saved in the CPU module on GX Works2 after power－off．In addition，GX Works2 provides an easier method to reconfigure positioning data，debug the positioning control system．

3 FUNCTIONAL COMPARISON BETWEEN AD71 AND QD75

3.1 List of Functional Comparisons

The following table shows functional comparisons between the AD71 and QD75.
For programs, refer to the following.
W Page 25 POSITIONING CONTROL PROGRAMS
\bigcirc : Compatible (no restrictions), \triangle : Compatible (with restrictions), \times : No alternative

Function			AD71				QD75		Compatibility		
			AD71	AD71S1	AD71S2 A1SD71- S2	AD71S7 A1SD71- S7	QD75P2N	QD75D2N			
No. of control axes			2 axes				2 axes		\bigcirc		
Manual pulse generator operation			Available		-	Available	Available		$\triangle^{* 1}$		
Applicable manual pulse generator			HD52B (Mitsubishi Electric Corp.), OSM-01-2(C) (Nemicon Corp.)				MR-HDP01 (Mitsubishi Electric Corp.)		Usable products are different between AD71 and QD75.		
JOG operation			Available				Available		\bigcirc		
Zero point return			Available				Available		\bigcirc		
Positioning	Position control	1-time positioning (End)	Available				Available		\bigcirc		
	mode	n-time positioning (Continued)	Available				Available		\bigcirc		
		Continue positioning, while changing speed (Pattern change)	Available				Available		\bigcirc		
	Linear interpolation		Available				Available		\bigcirc		
	Speed/Position control switching mode		-		Available	-	Available		\bigcirc		
	Speed control mode		-		Available	-	Available		\bigcirc		
No. of positioning data			400/axis				600/axis		\bigcirc		
Acceleration/Deceleration time			Same for Accel./Decel. times (1 pattern)				Individual setting for Accel./ Decel. time (4 patterns for each)		\bigcirc		
Backlash compensation			Available				Available (Do not use the function for an axis to be connected to the stepping motor.)		\triangle		
Error compensation			Available				N/A		$\triangle{ }^{*}$		
M code			Available				Available		\bigcirc		
M code comment display			Available				N / A		\times		
Data storage			SRAM (with battery backup)				Flash ROM (without battery)		$\triangle^{* 3}$		
No. of occupied slots			32 points/slot		AD71S2, AD71S7: 32 points/ slot		32 points/slot		$\triangle^{* 4}$		
			A1SD71-S2, A1SD71-S7: 48 points/2 slots								
I/O signal lines		Upper/Lower limit signal (Input signal)			N/A				Available		Wiring is required for QD75.
		START signal (Output signal)	Available				N/A		$\times{ }^{* 5}$		
		Pulse output (Output signal)	Open collector	Differential driver	Open collectar		Open collector	Differential driver	\bigcirc		
		Other signals	Available				Available		\bigcirc		
Current consumption			1.5A (0.8A for A1SD71-S2/S7)				0.30A	0.45A	-		

*1 The number of manual pulse generators that one module of QD75 can use is one. For details, refer to the following.
[] Type QD75P/QD75D Positioning Module User's Manual
*2 The QD75 substitutes electronic gears.
*3 No. of writes to flash ROM is up to 100,000 .
*4 Configure the StartXY address in the I/O assignment tab of the PC parameter to keep the address unchanged, when replacing the A1SD71-S2 and A1SD71-S7.
*5 Use an output module and create a program instead of using the signal. (\leftrightarrows Page 6 Servo Amplifier Connection Examples)

3.2 Replacement Procedure Flowchart

This flow chart shows the procedures to replace the AD71 with the QD75. Perform the replacement by following the steps below.

1. Choose a positioning module for the replacement according to the output type of command pulses.
\longmapsto Page 3 List of Functional Comparisons
2. Disconnect the wiring for AD71 and rewire for QD75.

F Page 5 Comparison Between AD71 and QD75 for Connecting the Signal Cable
\mapsto Page 6 Servo Amplifier Connection Examples
3. Rewrite the parameter data for QD75.

W Page 11 QD75 Parameter Settings (Comparison of Parameters Between AD71 and QD75)
\longmapsto Page 15 QD75 Zero Point Return Parameter Settings
\longmapsto Page 27 Programming Restrictions
\longmapsto Page 27 Program Examples for QD75
4. Rewrite the positioning data for QD75.

W Page 17 POSITIONING DATA SETTINGS
\mapsto Page 27 Programming Restrictions
\leftrightarrows Page 27 Program Examples for QD75
5. Rewrite the program for QD75.

W Page 20 DATA FOR POSITIONING CONTROL START
\longmapsto Page 24 OS DATA AREAS (INCLUDING MONITOR INFORMATION)
\longmapsto Page 25 Differences in I/O Signals
W Page 25 Precautions for Replacing AD71 with QD75
\mapsto Page 27 Programming Restrictions
\longmapsto Page 27 Program Examples for QD75
6. Perform a test operation using the JOG function.
\mapsto Page 27 Programming Restrictions
\longmapsto Page 27 Program Examples for QD75
\mapsto Page 39 QD75 TEST OPERATION

4 REWIRING

4.1 Comparison Between AD71 and QD75 for Connecting the Signal Cable

Item	AD71	QD75
1-axis control	AD71 signal connector (40-pin) is common to X axis and Y axis.	QD75 signal connector (40-pin) is common to Axis 1, Axis 2, Axis 3, and Axis 4. *2
2-axis control	AD71 signal connector (40-pin) is common to X axis and Y axis. (Bifurcated type cable).	QD75 signal connector (40-pin) is common to Axis 1, Axis 2, Axis 3, and Axis 4. *2
Connector type *1	Connector \quad Cet: A6CON Connector cover Manufacturer: Mitsubishi Electric Corp.	Connector \quad Set: A6CON Connector cover Manufacturer : Mitsubishi Electric Corp.

*1 The connector and connector cover are included with the AD71. They are not included with the QD75, but sold separately.
*2 Both QD75P4N and QD75D4N have two types of signal connectors. One connector is used for Axis 1 and Axis 2, and another is used for Axis 3 and Axis 4.

Signal cable

New signal cables are required for the QD75, as the signal specifications of the QD75 for the external connection are different from those of the AD71.

4.2 Servo Amplifier Connection Examples

For the pulse output, choose either the open collector or the differential driver depending on the external device. It is recommended to make differential driver connection since differential driver connection is superior to open collector connection in max. output pulse and max. connection distance between servos. ([]] Type QD75P/QD75D Positioning Module User's Manual)

Connection example with the servo amplifier MR-J2/J2S-DA (Differential driver)

Use the same logic (positive logic/negative logic) for the QD75DDN and servo amplifier. The QD75DON is initially set to negative logic.

*1 The logic for each I/O terminal can be changed with "[Pr.22] Input signal logic selection" and "[Pr.23] Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the above diagram.)
*2 The QD75 \square N upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set them closer to the center compared with the servo amplifier limit switches. When not using the upper limit signal (FLS) and the lower limit signal (RLS) of the QD75DDN, refer to the following.
\longmapsto Page 9 When not using the upper limit signal (FLS) and the lower limit signal (RLS) of the QD75DDN
*3 These are limit switches for the servo amplifier (for stop).
*4 This indicates the distance between the QD75DDN and servo amplifier.

Connection example with the servo amplifier MR-J3-पA (Differential driver)

Use the same logic (positive logic/negative logic) for the QD75DDN and servo amplifier. The QD75DロN is initially set to negative logic.

*1 The logic for each I/O terminal can be changed with "[Pr.22] Input signal logic selection" and "[Pr.23] Output signal logic selection" in detailed parameters 1. (Negative logic is used for all terminals in the above diagram.)
*2 The QD75ロN upper limit (FLS) and lower limit (RLS) are used in the OPR retry function. Set them closer to the center compared with the servo amplifier limit switches. When not using the upper limit signal (FLS) and the lower limit signal (RLS) of the QD75DDN, refer to the following.
F Page 9 When not using the upper limit signal (FLS) and the lower limit signal (RLS) of the QD75DDN
*3 These are limit switches for the servo amplifier (for stop).
*4 This indicates the distance between the QD75DIN and servo amplifier.

Connection example with the servo amplifier MR－J4－A（Differential driver）

Use the same logic（positive logic／negative logic）for the QD75DDN and servo amplifier．The QD75DON is initially set to negative logic．

＊1 The logic for each I／O terminal can be changed with＂［Pr．22］Input signal logic selection＂and＂［Pr．23］Output signal logic selection＂in detailed parameters 1．（Negative logic is used for all terminals in the above diagram．）
＊2 The QD75ロN upper limit（FLS）and lower limit（RLS）are used in the OPR retry function．Set them closer to the center compared with the servo amplifier limit switches．When not using the upper limit signal（FLS）and the lower limit signal（RLS）of the QD75DロN，refer to the following．
\longmapsto Page 9 When not using the upper limit signal（FLS）and the lower limit signal（RLS）of the QD75DDN
＊3 These are limit switches for the servo amplifier（for stop）．
＊4 This indicates the distance between the QD75DロN and servo amplifier．

When not using the upper limit signal (FLS) and the lower limit signal (RLS) of the QD75DロN

Depending on whether or not to wire the upper limit signal (FLS) and the lower limit signal (RLS), perform either of the following. (If the following operation is not performed, an error (error code: 104 or 105) will occur at start-up.)

- When wiring the upper limit signal (FLS) and the lower limit signal (RLS), set "Negative logic" (default) for "[Pr.22] Input signal logic selection" in Detailed parameters 1, and connect a 24VDC external power supply.
- When not wiring the upper limit signal (FLS) and the lower limit signal (RLS), set "Positive logic" for "[Pr.22] Input signal logic selection" in Detailed parameters 1.
For details, refer to the following.
[] Type QD75P/QD75D Positioning Module User's Manual

When manual pulse generator is used

The manual pulse generator (OSM-01-2(C)) for the AD71 is not compatible with the QD75D, therefore it is recommended to use one designed for the QD75DDN. (Recommended product for QD75DDN: MR-HDP01 manufactured by Mitsubishi Electric Corp.)
The input pulse from the manual pulse generator (MR-HDP01) is counted in multiples of 4.

- MR-HDP01 external dimensions

Unit: mm
The dimensions of the manual pulse generator for the AD71 are different from those for the QD75DDN at the three points (A), (B), and (C)) as shown in the "OSM-01-2(C) external dimensions" below. Please pay attention to the differences when replacing the manual pulse generator.

- OSM-01-2(C) external dimensions

Unit: mm

FA-A-0060-C

Speed/position switching enable signal (1A, 1B) for the AD71S2

Since Speed/position switching enable signal (1A, 1B) for the AD71S2 is replaced with [Cd.24] Speed/position switching enable flag for the QD75, the way of switching the speed and position is changed accordingly. (For the QD75, the switching is performed by writing data to [Cd.24] Speed/position switching enable flag.)

When the START signals (for releasing mechanical brakes) (11A and 11B) of the AD71 are used

When replacing the AD71 where the START signals (for releasing mechanical brakes) (11A and 11B) are used with the QD75, substitute output signals (Yロ) for the START signals by using an output module (such as the QY40P) and enabling the output signals (for releasing mechanical brakes) with a program.
Select an appropriate output module for your system.
The following table shows specifications of the AD71 START signal and output modules used for the QD75.

Item	START signal of AD71	Output module used for the QD75		
		QY10	QY40P	QY70
Output type	Open collector	Contact output	Transistor output (Open collector)	Transistor output (Open collector)
Load voltage	4.75 to 26.4 VDC	5 to 125VDC	10.2 to 28.8 VDC	4.5 to 15VDC
Load current	10 mA (Max.)	2 A	100 mA	16 mA

5 PARAMETER SETTINGS

5.1 QD75 Parameter Settings (Comparison of Parameters Between AD71 and QD75)

Replace the AD71 parameters with the QD75 parameters.

For details on the QD75 parameters, refer to the following.
[] Type QD75P/QD75D Positioning Module User's Manual

FA-A-0060-C
Parameter information

(Example)

Unit setting: pulse
Pulse output mode: CW/CCW mode
Rotation direction setting: Current value increment with forward run pulse output
M code ON signal output timing: WITH mode

AD71	QD75	
bit:10000011	Basic parameters 1	Unit setting: 3 (Pulse)
		Pulse output mode: 1 (CW/CCW mode)
		Rotation direction setting: 0 (Forward run)
	Detailed parameters 1	M code ON signal output timing: 0 (WITH mode)

Movement amount per pulse/Error compensation

When using the error compensation function of the AD71, refer to the following to set "No. of pulses per rotation", "Movement amount per rotation" and "Unit magnification".
[] Type QD75P/QD75D Positioning Module User's Manual

FA-A-0060-C

Speed limit value, JOG speed limit value, Bias speed at start

The units for the Speed limit value, JOG speed limit value and Bias speed at start of the AD71 and QD75 differ as shown in the following table.

Item	Unit			
	mm	inch	degree	pulse
AD71	$\times 10^{1} \mathrm{~mm} / \mathrm{min}$	$\times 1 \mathrm{inch} / \mathrm{min}$	$\times 1$ degree $/ \mathrm{min}$	$\times 10^{1} \mathrm{pulse} / \mathrm{s}$
QD75	$\times 10^{-2} \mathrm{~mm} / \mathrm{min}$	$\times 10^{-3} \mathrm{inch} / \mathrm{min}$	$\times 10^{-3}$ degree $/ \mathrm{min}$	$\times 10^{0} \mathrm{pulse} / \mathrm{s}$
Magnification ${ }^{* 1}$	$\times 1000$	$\times 1000$	$\times 1000$	$\times 10$

*1 For the QD75, multiply the AD71 value by 1000 for the unit of "mm", "inch" or "degree" or by 10 for "pulse". Correct values when they are set by means other than programs (such as GOT or via Ethernet).
(Example 1)
Unit: mm (inch, degree)
JOG speed limit value: $2000 \mathrm{~mm} / \mathrm{min}$

| Address X/Y
 $7875 / 7895$ | JOG speed limit value 200 | \longrightarrow Pr.31 JOG speed limit value 200000 |
| :--- | :--- | :--- | :--- |
| | | |

(Example 2)
Unit: pulse
Speed limit value: 20000 pulse/s
AD71
QD75

Acceleration and deceleration times

For "Acceleration time 0" and "Deceleration time 0" of the QD75's Basic parameters 2, set the same value as the "Acceleration and deceleration times" of the AD71.
(Example)
Acceleration and deceleration times 200ms

AD71	
$\begin{aligned} & \text { Address X/Y } \\ & 7876 / 7896 \end{aligned}$	Acceleration and deceleration times 200

Backlash compensation amount

(Example)
Unit: pulse
Backlash compensation amount: 200

Travel amount per pulse of manual pulse generator

The QD75 does not have the setting item equivalent to "Travel per manual pulse during inching" of the AD71.
Travel amount per pulse of manual pulse generator is determined by the combination of the setting of the axis control data, "[Cd.20] Manual pulse generator 1 pulse input magnification" and other factors. Set it by referring to the following. [] Type QD75P/QD75D Positioning Module User's Manual

Emergency stop deceleration time (for AD71S2)

For "[Pr.36] Sudden stop deceleration time" of the QD75's Detailed parameters 2, set the same value as the "Deceleration time for emergency stop" of the AD71S2.
For details, refer to the following.
[] Type QD75P/QD75D Positioning Module User's Manual

Positioning mode (for AD71S2)

The position control mode, speed/position switching mode and speed control mode are set in the positioning mode of the AD71S2. For the QD75, set the modes by using the positioning identifier of the positioning data.

Logic selection for pulse output to the drive unit

No setting item is provided for the AD71 because only negative logic is available for the AD71.
For the QD75, set "Logic selection for pulse output to the drive unit" to "0" to select negative logic.
0 : Negative logic
1: Positive logic

FA-A-0060-C

5.2 QD75 Zero Point Return Parameter Settings

Replace AD71 zero point return data with QD75 zero point return parameter.

Zero point return speed, Zero point return creep speed

For the QD75, multiply the AD71 value by 1000 for the unit of "mm", "inch" or "degree" or by 10 for "pulse". For the magnification, refer to the following.
\mathfrak{F} Page 13 Speed limit value, JOG speed limit value, Bias speed at start
(Example)
Unit: mm
Zero point return creep speed: $300 \mathrm{~mm} / \mathrm{min}$

(Example)
Unit: pulse
Zero point return speed: 20000 pulse/s
AD71
QD75

Zero point return information

(Example)
Zero point return method: Pulse generator method
Zero point return direction: Negative direction (Negative direction (address decrement direction))

$$
\text { AD71 } \quad \text { QD75 }
$$

Zero point return acceleration time selection/Zero point return deceleration time selection

These items are required to be set for the QD75 although they are not provided for the AD71. Therefore, to keep the consistency in these values, select the default value " 0 ".
(Setting the default " 0 " ensures the value of Acceleration/deceleration time for the positioning data are the same.)

FA-A-0060-C

6 POSITIONING DATA SETTINGS

Data configuration of the buffer memory that stores positioning data differs between the AD71 and the QD75. Therefore, refer to the following positioning data configuration, and replace the AD71 positioning data with the QD75 positioning data.
(The data of [Da.5] "Axis to be interpolated" and [Da.7] "Arc address" are omitted from the following QD75 positioning data area.)

AD71 parameters

AD71 positioning data area

FA-A-0060-C

Positioning information

Positioning pattern, positioning method, positioning direction and M code

*1 Control method
In the QD75, the positioning control (e.g. linear/circular interpolation), speed control, or speed/position switching control is specified in the control method setting. Control method can be set for each positioning data.
*2 M code
The range of settable values for the QD75 is expanded. Therefore, the values can be set from 0 to 65535 .
Setting the same values as values (0 to 255) for the AD71 ensures the control operation of QD75 same as the AD71.
AD71

QD75

Set the same value as that of the AD71.
To disable the M code output, set "0 (initial value)".

FA-A-0060-C
(Example 1)
Positioning pattern: Positioning end
Positioning method: Absolute
M code: 20
Positioning speed: 10000 pulse/s
Dwell time: 0
Positioning address: 223344 pulses

AD71	QD75
Positioning information bit: 0001010000000000 Positioning speed: 1000 Dwell time: 0 Positioning address: 223344	Positioning identifier: 0100H (HEX) M code: 20 Dwell time: 0 Command speed: 10000 Positioning address: 223344

(Example 2)

Positioning pattern: Change speed and continue positioning
Positioning method: Increment
M code: 255
Positioning speed: $30000 \mathrm{~mm} / \mathrm{min}$
Dwell time: 100ms
Positioning address: $-78900 \mu \mathrm{~m}$

AD71	QD75
Positioning information bit: 1111111100001111 Positioning speed: 3000 Dwell time: 10 Positioning address: 789000	\longrightarrowPositioning identifier: 0203H (HEX) M code: 255 Dwell time: 100 Command speed: 3000000 Positioning address: -789000

FA-A-0060-C

7 DATA FOR POSITIONING CONTROL START

To enable the continuous positioning using the AD71 pointers, use the block start function.
For details, refer to the following.
[] Type QD75P/QD75D Positioning Module User's Manual

FA-A-0060-C

Start data No.

The number of positioning data to be used is set in the [Cd.3] "Positioning start No." of the QD75.
(Setting example)

AD71		QD75
$\begin{aligned} & \text { Address X/Y } \\ & 0 / 300 \end{aligned}$	Start data	Cd. 3 Positioning start No.
- 1 to 400: Pos	ioning data No.	- 1 to 600: Positioning data No. - 7000 to 7004 : Block start specification - 8001 to 8050: Indirect specification - 9001: Machine zero point return - 9002: High-speed zero point return - 9003: New current value - 9004 : Multiple axes simultaneous start

Precautions

When replacing the AD71 which performs continuous positioning operation using pointers with the QD75, observe precautions below.

- The AD71 operation

For continuous positioning operation using pointers, when the interpolation start or both-axis start is set for the next point, the AD71 does not execute the next point (interpolation start or both-axis start) until the current positioning of both axes is completed.

FA-A-0060-C

- The QD75 operation

The QD75 cannot use the control method of the AD71. (When the interpolation start for X axis is executed while the Y axis is still operating, positioning will stop and an error will occur.) For the QD75, when performing the positioning operation multiple times, perform the positioning start separately for each session as shown below. To do so, create a program where the 2-axis linear interpolation or both-axis start is executed after positioning completion of both axes.

Speed change data

The method of changing speed is different between the AD71 and QD75. To change the speed for the QD75, set a new speed value in the axis control data area and set "1" to the "Speed change request".

Current value change

The method of changing a current value is different between the AD71 and QD75. For the QD75, set a new current value in the axis control data area and set " 9003 " to the positioning start No. The current value will then change after normal positioning start.

JOG speed

For the QD75, multiply the AD71 value by 1000 for the unit of "mm", "inch" or "degree" or by 10 for "pulse".
Although the JOG start signal (Yロ) device No. and the buffer memory address for the JOG speed setting are different between the AD7 and the QD75, the control method is the same.
(Example)
Unit: pulse
JOG speed: 20000 pulse/s

Enabling manual pulse generator

The manual pulse generator enabled function of the AD71 is replaced with [Cd.21] Manual pulse generator enable flag of the QD75.

Error reset

For the AD71, the error reset function (address 201) resets the error for both the X and Y axes simultaneously, while for the QD75 the error reset is set for each axis independently. Therefore, for the QD75, create a program to reset an error for each axis.

Emergency stop area (for AD71S2)

To perform the same operation as the emergency stop function of the AD71S2 for the QD75, set "1: Sudden stop" to both [Pr.38] Stop group 2 sudden stop selection and [Pr.39] Stop group 3 sudden stop selection in the QD75's detailed parameters 2.

- 0: Normal decelerated stop
- 1: Sudden stop

For details, refer to the following.
[] Type QD75P/QD75D Positioning Module User's Manual

AD71S2 stop factor	Setting on QD75
Emergency stop triggered by external input	• Set the same time value as the AD71S2 deceleration time for emergency stop (address 7888/7908) to [Pr.36] Sudden stop deceleration time. • Set "1: Sudden stop" to [Pr.39] Stop group 3.
Emergency stop triggered by JOG signal OFF	- Set the same time value as the AD71S2 deceleration time for emergency stop (address 7888/7908) to [Pr.28] Deceleration time.

Travel distance change area (for AD71S2)

Set the same value as the one in the AD71S2's travel distance change area to the QD75 [Cd.23] "Speed/position changeover control movement amount change register". Note that different methods are used for the AD71S2 and QD75 to enable the speed/position switching. For the AD71S2, it is enabled by external input, while for the QD75, it is enabled with [Cd.24] Speed/position switching enable flag.

Restart request area (for AD71S2)

The QD75 will resume the positioning from the stopped position to the positioning data end point, when "1" is set in [Cd.6] Restart command. (Turning ON the positioning start signal Yロ is not required.)

Manual pulse generator output speed (for AD71S7)

The AD71S7 manual pulse generator output speed setting is not available for the QD75.
For the QD75, the command output during the manual pulse generator operation is as follows:
[No. of command pulses] = (No. of input pulses of manual pulse generator) \times ([Cd.20] Manual pulse generator 1 pulse input magnification)
[Command frequency] $=($ Manual pulse generator input frequency $) \times([C d .20]$ Manual pulse generator 1 pulse input magnification)
For the QD75, the speed during the manual pulse generator operation is not limited by [Pr.8] Speed limit value.

FA-A-0060-C

8 OS DATA AREAS (INCLUDING MONITOR INFORMATION)

Output speed

For the QD75, a value to be stored is the one obtained by multiplying the AD71 value by 1000 for the unit of "mm", "inch" or "degree" or by 10 for "pulse".
(Example)
Unit: mm
Feed rate: 20000 mm/min
AD71

Current value, Torque limit value and Set movement amount

The AD71 and QD75 store the same values.
(Example)
Current value: 1000 pulses
AD71 QD75

$\begin{aligned} & \hline \text { Address X/Y } \\ & 602,603 / 604,605 \end{aligned}$	Current value 1000	Md. 20 Current feed value 1000

(Example)

Torque limit value: 300\%

(Example)
Set movement amount: 100 pulses

AD71		QD75	
$\begin{aligned} & \hline \text { Address X/Y } \\ & 608,609 / 610,611 \end{aligned}$	Set movement amount 100	Md. 29	Speed/position changeover control positioning amount after switched ON 100

9 POSITIONING CONTROL PROGRAMS

9．1 Differences in I／O Signals

AD71	QD75
Watchdog timer error（X0）	No watchdog timer error signal is provided． When a watchdog timer error occurs，QD75 Ready（X0）turns OFF．
Zero point return request（X6，X7）	The status can be checked in［Md．31］Zero point return request flag（Bit 3）． ＂1＂is set，when the zero point return is requested．
Battery error（XA）	No battery error signal is provided． For the QD75，batteries are not required for memory backup because data is stored in the flash ROM．
Error detection（XB）	Error detection can be performed for each axis independently． Axis 1：X8，Axis 2：X9，Axis 3：XA，Axis 4：XB
Zemmon to both X axis and return complete（XC，XD）	The status can be checked in［Md．31］Zero point return complete flag（Bit 4）． ＂1＂is set，when the zero point return is completed．
Interpolation positioning start（Y12）	No interpolation start signal is provided． For the QD75，interpolation operation is started by setting interpolation to positioning data and executing positioning start．
Zero point return start（Y13，Y14）	No zero point return start signal is provided． For the QD75，writing＂9001＂to［Cd．3］Positioning start No．and starting positioning will execute zero point return．
M code OFF（Y1B，Y1C）	［Cd．7］M code OFF request is used． Writing＂1＂turns M code OFF．

For details on the QD75 I／O signals，refer to the following．
［］Type QD75P／QD75D Positioning Module User＇s Manual

9．2 Precautions for Replacing AD71 with QD75

When programming，pay attention to the fact that the QD75 is different from the AD71 in I／O numbers for I／O signals and buffer memory addresses．Precautions for other than these differences are shown below．

Item		AD71	QD75	Points for replacement
Setup	Programmable controller ready	Y1D is turned ON with the program．	Y0 is turned ON with the program．	－
	Ready status confirmation	When AD71 is ready，X1 is turned ON．	When QD75 is ready，X0 is turned ON．	－
JOG operation		Turning ON or OFF the forward／reverse JOG start（Yロ）starts or stops JOG operation accordingly．		－
Zero point return		Zero point return is started when the zero point return signal（Yロ）is turned ON for each axis．The operation depends on parameter setting of zero point return data．	The same method as positioning start is used（program）． Writing＂9001＂to［Cd．3］Positioning start No． and turning ON the positioning start signal （Yロ）starts zero point return．The operation depends on parameter setting of zero point return data．	There is no zero point return signal（Yロ）for QD75．Writing ＂9001＂to［Cd．3］Positioning start No．and turning ON the positioning start signal（Yロ） starts zero point return．
Positioning operation		Positioning is started by writing the positioning data No．to the start data No． area in the buffer memory，and turning ON the start signal（Yロ）for each axis．The start signal（Yロ）for interpolation is provided separately．	Positioning is started by writing the positioning data No．to［Cd．3］＂Positioning start No．＂in the buffer memory，and then turning ON the start signal（Yロ）for each axis． Also，as the QD75 does not have an interpolation start signal（Yロ）same as AD71，interpolation operation has to be set in the positioning data．	To start interpolation，the operation must be specified in the positioning data．
Speed change		Write a new speed value in the speed change data area（buffer memory address 40／340）．	Write a new speed value to［Cd．14］＂New speed value＂in the buffer memory and set ＂1＂to［Cd．15］Speed change request．	Setting＂1＂in［Cd．15］＂Speed change request＂is required to execute this function．
Curren	ue change	Write data for a new current value in the current value change data area（buffer memory address $41,42 / 341,342$ ）．	Write data for a new current value to［Cd．9］ ＂New current value＂in the buffer memory and＂9003＂to［Cd．3］＂Positioning start No．＂ and then，turn ON the positioning start signal（Yロ）．	Writing＂9003＂to［Cd．3］ ＂Positioning start No．＂and turning ON the positioning start signal（Yロ）is required．

FA－A－0060－C

Item	AD71	QD75	Points for replacement
Restart	If positioning stops temporarily，turn ON the positioning start signal（Yロ）to restart． However，positioning cannot be restarted in the increment system．In the absolute system，positioning can be restarted if its positioning data No．is same as the one when the operation stopped． When the operation stops unexpectedly during the control switch in the speed／ positioning control switching mode，set＂1＂ to Restart area（Buffer memory address： 205／505）and turn ON the positioning start signal（Yロ）to restart the operation．	Setting＂1＂to［Cd．6］＂Restart command＂ after a temporary stop restarts the positioning． For the absolute and increment systems， the restart command can be used． In the absolute system，when the operation stops，set the positioning data No．same as the one when operation stopped to［Cd．3］ ＂Positioning start No．＂and turn ON the positioning start signal（Yロ）to restart positioning．	Setting＂1＂to［Cd．6］＂Restart command＂restarts positioning in the QD75．
Data backup method	Contents of the buffer memory are always backed up using a battery． The operation after power－on or programmable controller CPU reset is based on the backed－up memory data．	Parameters，positioning data，and block start data in the buffer memory are written to flash ROM for backup by setting＂1＂to ［Cd．1］Flash ROM write request．（The No．of flash ROM write：Up to 100000） At the time of power－on or programmable controller CPU reset，the flash ROM data are transferred to the buffer memory and the module operates with those data．（L］Type QD75P／QD75D Positioning Module User＇s Manual） However，if the data has been written to the buffer memory with the program at the time of power－on or programmable controller CPU reset，the data written with the program will be valid because the program data overwrites the data transferred from the flash ROM．	To back up data，＂1＂must be set in［Cd．1］＂Flash ROM write request＂． The max number of flash ROM writes is 100000 times．

FA-A-0060-C

9.3 Programming Restrictions

Reading/writing the data

We recommend setting the data described in this chapter (various parameters, positioning data, block start data) by using GX Works2.
Setting the data with program requires a large number of programs and devices, and thus programs become more complicated and the scan time increases.
When rewriting the positioning data during continuous path control or continuous positioning control, rewrite it before the execution of data four items before.
If the positioning data is not rewritten before the execution of data four items before, the process will be carried out with the data before the rewrite.

Restrictions on speed change intervals

For the QD75, the speed change must be executed in intervals of 100 ms or more.

9.4 Program Examples for QD75

This section provides some basic program examples for the QD75 positioning control. When creating programs for the QD75, refer to the following examples and compare them with those in the AD71.
(The program examples represent the case in which the QD75 is mounted in slot 0 of the main base unit.)
To perform controls other than those shown as the examples, refer to the following.
[] Type QD75P/QD75D Positioning Module User's Manual
When using GX Works2 to create data, the following parameter setting program and the positioning data setting program are not required.

FA-A-0060-C

Parameter settings

■Basic parameters setting

* No. 1 Parameter setting program
* $\begin{aligned} & \text { (For basic parameters } 1 \text { <axis } 1>\text {) }\end{aligned}$

SM402			[MOVP	K0	D50] <Setting of unit setting (0: mm)>	
			[MOVP	K20000	D51]	<Setting of No. of pulses per rotation>
			[MOVP	K15000	D52]	<Setting of movement amount per rotation>
			[MOVP	K1	D53]	<Setting of unit magnification (1 fold)>
			[MOVP	K1	D54]	<Setting of pulse output mode (CW/CCW) >
			[MOVP	K0	D55]	<Setting of rotation direction (forward rotation for increment)s
			[DMOVP	K1000	D56]	<Bias speed ($10.00 \mathrm{~mm} / \mathrm{min}$) setting>
	[TOP	H0	K0	D50	K8]	<Setting of basic parameters 1 to QD75>
				[SET	M50]	<Basic parameter 1 setting completion>

■OPR parameters setting

* (For OPR basic parameters <axis 1>)

$\stackrel{\text { SM402 }}{1}$			[MOVP	K0	D200]	<Setting of near-point dog method to OPR method>
			[MOVP	K0	D201]	<Setting of foward direction to OPR direction>
			[DMOVP	K0	D202]	<Setting of 0 to OP address>
			[DMOVP	K5000	D204]	<Setting of $50.00 \mathrm{~mm} / \mathrm{min}$ to OPR speed>
			[DMOVP	K1500	D206]	<Setting of $15.00 \mathrm{~mm} / \mathrm{min}$ to creep speed>
			[MOVP	K1	D208]	<Setting OPR retry so that it may be performed>
	[TOP	H0	K70	D200	K9]	<Setting of OPR basic parameters to the QD75>
				[SET	M51]	<OPR basic parameter setting completion>

Speed-position switching control parameters setting (only when speed-position switching control function is used)

* Parameter setting program for speed-position switching control (ABS mode)
* Parameter se
(Not needed when speed-position switching control (A.BS mode) is not executed) * <X4D turns ON before startup>

FA-A-0060-C

Positioning data setting

■Positioning data setting

```
* No. 2 Positioning data setting program
(For positioning data No. 1 <axis 1>)
<Positioning identifier>
    Operation pattern: Positioning complete
        Control system: 1-axis linear control (ABS)
        Acceleration time No.: 1, deceleration time No. 2
```

$\stackrel{\text { SM402 }}{\text { SM }}$			[MOVP	H190	D58]. <Setting of positioning identifier>	
			[MOVP	K9843	D59]	<Setting of M code (9843)>
			[MOVP	K300	D60	7	
			[MOVP	K0	D61]	<(Dummy data)>
			[DMOVP	K18000	D62		<Setting of command speed ($180.00 \mathrm{~mm} / \mathrm{min}$)>
			[DMOVP	K4126	D64]	<Positioning address ($412.6 \mu \mathrm{~m}$) setting>
			[DMOVP	K0	D66]	<Setting of arc address ($0.0 \mu \mathrm{~m}$)>
	[TOP	H0	K2000	D58	K10]	<Setting of positioning data No. 1 to QD75>

■Block start data setting (only when block start function is used)

* No. 3 Block start data setting program

Block start data of start block 0 (axis 1
For setting of points 1 to 5
Conditions)
Shape: Continued at points 1 to 4 , ended at point 5
Special start instruction: Normal start at all of points 1 to s
<Positioning data are already preset
[Setting of shape and start data No.]

Special start instruction data setting (only when special start instruction function is used)

```
* [Setting of special start instruction to normal start]
```


■OPR request OFF (only when OPR is not executed)

■External command function valid setting (only when external command function is used)

* No. 5 External command function valid setting program

■ Programmable controller READY signal ON

* (M50 contact not required for synchronous mode.)
< READY signal ON/OFF>

Positioning start No. setting

■OPR

```
* No. }7\mathrm{ Positioning start No. setting program
(1) Machine OPR
```


■Positioning start data No. setting

Speed-position switching operation start data No. setting (only when speed-position switching operation function is used)

■Position-speed switching operation start data No. setting (QD75 additional function)

```
(5) Position-speed switching operation positioning data No. }
```


FA-A-0060-C
■High-level positioning control (only when block positioning start function is used)

* (6) High-level positioning control

■Fast OPR command OFF (only when fast OPR function is used)

* (7) Fast OPR command and fast OPR command storage OFF (Not required when fast OPR is not used)

FA-A-0060-C

Positioning start

■Start using dedicated instruction

* No. 8 Positioning start program
(1) When dedicated instruction (PSTRT1) is used
(When fast OPR is not made, contacts of M3 and M4 are not needed.)
(When M code is not used, contact of X04 is not needed.)
(When JOG operation/inching operation is not performed, contact of M7 is not needed.)
(When manual pulse generator operation is not performed, contact of M9 is not needed.)

Start using positioning start signal

* (2) When positioning start signal (Y 10) is used
(When fast OPR is not made, contacts of M3 and M4 are not needed.)
(When M code is not used, contact of X04 is not needed.)
(When JOG operation/inching operation is not performed, contact of M7 is not needed.)
(When manual pulse generator operation is not performed, contact of M9 is not needed.)

<Positioning start command pulse>
<Positioning start command hold>
<Positioning start No. setting>
<Positioning start execution>
<Positioning start command storage OFF>
<Positioning start signal OFF>

■M code OFF (only when M code is used)

* No. 9 M code OFF program
(Not required when M code is not used)

■JOG operation and inching operation (QD75 additional function) setting and start

Manual pulse generator operation (only when manual pulse generator is used)

FA-A-0060-C

■Speed change using new speed value

* No. 14 Speed change program

■Speed change using override function (QD75 additional function)

* No. 15 Overide program

Acceleration or deceleration time change (QD75 additional function)

■Torque change (only when torque control function is used)

$$
\begin{aligned}
& \text { * No. } 17 \text { Torque change program } \\
& \text { * }
\end{aligned}
$$

[^0]
■Step operation (QD75 additional function)

No. 18 Skip program

M16
D20
D21
U01
G1544

■Skip (QD75 additional function)

${ }_{*}^{*}$ No. 19 Skip program

M17	J	<Skip pulse>
M18	1	<Skip command ON storage>
$\begin{aligned} & \text { U0\} } \\ {\text { G1547 }} \end{aligned}$	1	<Skip command write>
M18]	<Skip command storage OFF>

■Manual operation (teaching) positioning (QD75 additional function)

* No. 20 Teaching program

■Continuous operation interrupt

FA-A-0060-C

Target position change (QD75 additional function)

$*$
$*$
No. 22 Target position change program

■Absolute position restoration (QD75 additional function)

* No. 23 Absolute position restoration program
(1) Absolute position restoration command acceptance

(2) Setting of transmit data to servo-amplifier and confirmation of absolute position restoration completion ABRST1 instruction completed when M42 is ON and M43 is OFF
Absolute position data restoration completed when status $=0$.

(3) ABS data setting and ABRST1 instruction execution

Restart after positioning stop

```
* No. }24\mathrm{ Restart program
```


FA-A-0060-C

Parameter initialization

```
* No. }25\mathrm{ Parameter initialization program
```


■Flash ROM write

Error reset

* No. 27 Error reset program

-Axis stop

\qquad

[^1]
10 QD75 TEST OPERATION

When the connection of the relevant signals, and the creation of programs for positioning control are completed, perform a test operation for start-up of the positioning system using the QD75.

LED display check on QD75 module

Turn on the programmable controller and check the following LED display on the QD75 module when the program runs.

- On, off, or flashing of RUN indicator LED, ERR indicator LED, and Axis display LED indicate the module states. For details, refer to the following.
[] Type QD75P/QD75D Positioning Module User's Manual
- When an error occurs, check the error details with the [Md.9] Axis in which the error occurred and the [Md.10] Axis error No. and eliminate the error factor.

"Ready ON" and "Servo ON" check

After confirming the QD75 has started normally, turn on the programmable controller READY signal, power on the servo amplifier and check that the servo amplifier has started up without any error.

Operation check by JOG operation

Perform the JOG operation using the JOG operation program of the positioning control programs, and check that the motor functions correctly according to the commands set.
Normal JOG operation indicates that the control of the QD75 and the driver (servo amplifier) is normal.

Operation check of positioning system

Start the programs for zero point return and positioning and check that the control operation is normally performed.

FA-A-0060-C

11 LISTS OF QD75 BUFFER MEMORY ADDRESSES

The QD75 buffer memory addresses are listed below. (Do not use any address other than listed below. If used, the system may not operate correctly.)

11.1 Parameters [Pr.]

Positioning parameters

Basic parameters 1

Buffer memory address			Item	
Axis 1	Axis 2	Axis 3	Axis 4	
0	150	300	450	[Pr.1] Unit setting
1	151	301	451	[Pr.2] No. of pulses per rotation (Ap)
2	152	302	452	[Pr.3] Movement amount per rotation (Al)
3	153	303	453	[Pr.4] Unit magnification (Am)
4	154	304	454	[Pr.5] Pulse output mode
5	155	305	455	[Pr.6] Rotation direction setting
6	156	306	456	[Pr.7] Bias speed at start
7	157	307	457	
8	158	308	458	Use prohibited
9	159	309	459	

Basic parameters 2

Buffer memory address			Item	
Axis 1	Axis 2	Axis 3	Axis 4	
10	160	310	460	[Pr.8] Speed limit value
11	161	311	461	
12	162	312	462	[Pr.9] Acceleration time 0
13	163	313	463	
14	164	314	464	[Pr.10] Deceleration time 0
15	165	315	465	

FA-A-0060-C

Detailed parameters 1

Buffer memory address			Item	
Axis 1	Axis 2	Axis 3	Axis 4	
17	167	317	467	[Pr.11] Backlash compensation amount
18	168	318	468	[Pr.12] Software stroke limit upper limit value
19	169	319	469	
20	170	320	470	[Pr.13] Software stroke limit lower limit value
21	171	321	471	
22	172	322	472	[Pr.14] Software stroke limit selection
23	173	323	473	[Pr.15] Software stroke limit valid/invalid selection
24	174	324	474	[Pr.16] Command in-position width
25	175	325	475	
26	176	326	476	[Pr.17] Torque limit setting value
27	177	327	477	[Pr.18] M code ON signal output timing
28	178	328	478	[Pr.19] Speed switching mode
29	179	329	479	[Pr.20] Interpolation speed designation method
30	180	330	480	[Pr.21] Current feed value during speed control
31	181	331	481	[Pr.22] Input signal logic selection
32	182	332	482	[Pr.23] Output signal logic selection
33	-	-	-	[Pr.24] Manual pulse generator input selection
34	184	334	484	[Pr.150] Speed-position function selection
35	185	335	485	Use prohibited
140	-	-	-	[Pr.70] Positioning option valid/invalid setting

FA-A-0060-C

Detailed parameters 2

Buffer memory address			Item	
Axis 1	Axis 2	Axis 3	Axis 4	
36	186	336	486	[Pr.25] Acceleration time 1
37	187	337	487	
38	188	338	488	[Pr.26] Acceleration time 2
39	189	339	489	
40	190	340	490	[Pr.27] Acceleration time 3
41	191	341	491	
42	192	342	492	[Pr.28] Deceleration time 1
43	193	343	493	
44	194	344	494	[Pr.29] Deceleration time 2
45	195	345	495	
46	196	346	496	[Pr.30] Deceleration time 3
47	197	347	497	
48	198	348	498	[Pr.31] JOG speed limit value
49	199	349	499	
50	200	350	500	[Pr.32] JOG operation acceleration time selection
51	201	351	501	[Pr.33] JOG operation deceleration time selection
52	202	352	502	[Pr.34] Acceleration/deceleration process selection
53	203	353	503	[Pr.35] S-curve ratio
54	204	354	504	[Pr.36] Sudden stop deceleration time
55	205	355	505	
56	206	356	506	[Pr.37] Stop group 1 sudden stop selection
57	207	357	507	[Pr.38] Stop group 2 sudden stop selection
58	208	358	508	[Pr.39] Stop group 3 sudden stop selection
60	209	359	509	[Pr.40] Positioning complete signal output time
62	211	360	510	[Pr.41] Allowable circular interpolation error width

FA-A-0060-C

OPR parameters

OPR basic parameters

Buffer memory address			Item	
Axis 1	Axis 2	Axis 3	Axis 4	
70	220	370	520	[Pr.43] OPR method
71	221	371	521	[Pr.44] OPR direction
72	222	372	522	[Pr.45] OP address
73	223	373	523	
74	224	374	524	[Pr.46] OPR speed
75	225	375	525	
76	226	376	526	[Pr.47] Creep speed
77	227	377	527	
78	228	378	528	[Pr.48] OPR retry

OPR detailed parameters

Buffer memory address			Item	
Axis 1	Axis 2	Axis 3	Axis 4	
79	229	379	529	[Pr.49] OPR dwell time
80	230	380	530	[Pr.50] Setting for the movement amount after near-point dog ON
81	231	381	531	
82	232	382	532	[Pr.51] OPR acceleration time selection
83	233	383	533	[Pr.52] OPR deceleration time selection
84	234	384	534	[Pr.53] OP shift amount
85	235	385	535	
86	236	386	536	[Pr.54] OPR torque limit value
87	237	387	537	[Pr.55] Deviation counter clear signal output time
88	238	388	538	[Pr.56] Speed designation during OP shift
89	239	389	539	[Pr.57] Dwell time during OPR retry

FA-A-0060-C

11.2 Monitor Data [Md.]

System monitor data [Md.]					
Buffer memory address				Item	
Axis 1	Axis 2	Axis 3	Axis 4		
1200				[Md.1] In test mode flag	
1201 to 1211				Use prohibited	
1212				Start history 0	[Md.3] Start information
1213					[Md.4] Start No.
1440					[Md.50] Start (Year: month)
1214					[Md.5] Start (Day: hour)
1215					[Md.6] Start (Minute: second)
1216					[Md.7] Error judgment
1217				Start history 1	[Md.3] Start information
1218					[Md.4] Start No.
1441					[Md.50] Start (Year: month)
1219					[Md.5] Start (Day: hour)
1220					[Md.6] Start (Minute: second)
1221					[Md.7] Error judgment
1222				Start history 2	[Md.3] Start information
1223					[Md.4] Start No.
1442					[Md.50] Start (Year: month)
1224					[Md.5] Start (Day: hour)
1225					[Md.6] Start (Minute: second)
1226					[Md.7] Error judgment
1227				Start history 3	[Md.3] Start information
1228					[Md.4] Start No.
1443					[Md.50] Start (Year: month)
1229					[Md.5] Start (Day: hour)
1230					[Md.6] Start (Minute: second)
1231					[Md.7] Error judgment
1232				Start history 4	[Md.3] Start information
1233					[Md.4] Start No.
1444					[Md.50] Start (Year: month)
1234					[Md.5] Start (Day: hour)
1235					[Md.6] Start (Minute: second)
1236					[Md.7] Error judgment
1237				Start history 5	[Md.3] Start information
1238					[Md.4] Start No.
1445					[Md.50] Start (Year: month)
1239					[Md.5] Start (Day: hour)
1240					[Md.6] Start (Minute: second)
1241					[Md.7] Error judgment
1242				Start history 6	[Md.3] Start information
1243					[Md.4] Start No.
1446					[Md.50] Start (Year: month)
1244					[Md.5] Start (Day: hour)
1245					[Md.6] Start (Minute: second)
1246					[Md.7] Error judgment

FA-A-0060-C

Buffer memory address				Item	
Axis 1	Axis 2	Axis 3	Axis 4		
1247				Start history 7	[Md.3] Start information
1248					[Md.4] Start No.
1447					[Md.50] Start (Year: month)
1249					[Md.5] Start (Day: hour)
1250					[Md.6] Start (Minute: second)
1251					[Md.7] Error judgment
1252				Start history 8	[Md.3] Start information
1253					[Md.4] Start No.
1448					[Md.50] Start (Year: month)
1254					[Md.5] Start (Day: hour)
1255					[Md.6] Start (Minute: second)
1256					[Md.7] Error judgment
1257				Start history 9	[Md.3] Start information
1258					[Md.4] Start No.
1449					[Md.50] Start (Year: month)
1259					[Md.5] Start (Day: hour)
1260					[Md.6] Start (Minute: second)
1261					[Md.7] Error judgment
1262				Start history 10	[Md.3] Start information
1263					[Md.4] Start No.
1450					[Md.50] Start (Year: month)
1264					[Md.5] Start (Day: hour)
1265					[Md.6] Start (Minute: second)
1266					[Md.7] Error judgment
1267				Start history 11	[Md.3] Start information
1268					[Md.4] Start No.
1451					[Md.50] Start (Year: month)
1269					[Md.5] Start (Day: hour)
1270					[Md.6] Start (Minute: second)
1271					[Md.7] Error judgment
1272				Start history 12	[Md.3] Start information
1273					[Md.4] Start No.
1452					[Md.50] Start (Year: month)
1274					[Md.5] Start (Day: hour)
1275					[Md.6] Start (Minute: second)
1276					[Md.7] Error judgment
1277				Start history 13	[Md.3] Start information
1278					[Md.4] Start No.
1453					[Md.50] Start (Year: month)
1279					[Md.5] Start (Day: hour)
1280					[Md.6] Start (Minute: second)
1281					[Md.7] Error judgment
1282				Start history 14	[Md.3] Start information
1283					[Md.4] Start No.
1454					[Md.50] Start (Year: month)
1284					[Md.5] Start (Day: hour)
1285					[Md.6] Start (Minute: second)
1286					[Md.7] Error judgment

FA-A-0060-C

Buffer memory address				Item	
Axis 1	Axis 2	Axis 3	Axis 4		
1287				Start history 15	[Md.3] Start information
1288					[Md.4] Start No.
1455					[Md.50] Start (Year: month)
1289					[Md.5] Start (Day: hour)
1290					[Md.6] Start (Minute: second)
1291					[Md.7] Error judgment
1292				[Md.8] Start history pointer	
1293				Error history 0	[Md.9] Axis in which the error occurred
1294					[Md.10] Axis error No.
1456					[Md.51] Axis error occurrence (Year: month)
1295					[Md.11] Axis error occurrence (Day: hour)
1296					[Md.12] Axis error occurrence (Minute: second)
1297				Error history 1	[Md.9] Axis in which the error occurred
1298					[Md.10] Axis error No.
1457					[Md.51] Axis error occurrence (Year: month)
1299					[Md.11] Axis error occurrence (Day: hour)
1300					[Md.12] Axis error occurrence (Minute: second)
1301				Error history 2	[Md.9] Axis in which the error occurred
1302					[Md.10] Axis error No.
1458					[Md.51] Axis error occurrence (Year: month)
1303					[Md.11] Axis error occurrence (Day: hour)
1304					[Md.12] Axis error occurrence (Minute: second)
1305				Error history 3	[Md.9] Axis in which the error occurred
1306					[Md.10] Axis error No.
1459					[Md.51] Axis error occurrence (Year: month)
1307					[Md.11] Axis error occurrence (Day: hour)
1308					[Md.12] Axis error occurrence (Minute: second)
1309				Error history 4	[Md.9] Axis in which the error occurred
1310					[Md. 10] Axis error No.
1460					[Md.51] Axis error occurrence (Year: month)
1311					[Md.11] Axis error occurrence (Day: hour)
1312					[Md.12] Axis error occurrence (Minute: second)
1313				Error history 5	[Md.9] Axis in which the error occurred
1314					[Md. 10] Axis error No.
1461					[Md.51] Axis error occurrence (Year: month)
1315					[Md.11] Axis error occurrence (Day: hour)
1316					[Md.12] Axis error occurrence (Minute: second)
1317				Error history 6	[Md.9] Axis in which the error occurred
1318					[Md. 10] Axis error No.
1462					[Md.51] Axis error occurrence (Year: month)
1319					[Md.11] Axis error occurrence (Day: hour)
1320					[Md.12] Axis error occurrence (Minute: second)
1321				Error history 7	[Md.9] Axis in which the error occurred
1322					[Md.10] Axis error No.
1463					[Md.51] Axis error occurrence (Year: month)
1323					[Md.11] Axis error occurrence (Day: hour)
1324					[Md.12] Axis error occurrence (Minute: second)

FA-A-0060-C

Buffer memory address				Item	
Axis 1	Axis 2	Axis 3	Axis 4		
1325				Error history 8	[Md.9] Axis in which the error occurred
1326					[Md.10] Axis error No.
1464					[Md.51] Axis error occurrence (Year: month)
1327					[Md.11] Axis error occurrence (Day: hour)
1328					[Md.12] Axis error occurrence (Minute: second)
1329				Error history 9	[Md.9] Axis in which the error occurred
1330					[Md.10] Axis error No.
1465					[Md.51] Axis error occurrence (Year: month)
1331					[Md.11] Axis error occurrence (Day: hour)
1332					[Md.12] Axis error occurrence (Minute: second)
1333				Error history 10	[Md.9] Axis in which the error occurred
1334					[Md.10] Axis error No.
1466					[Md.51] Axis error occurrence (Year: month)
1335					[Md.11] Axis error occurrence (Day: hour)
1336					[Md.12] Axis error occurrence (Minute: second)
1337				Error history 11	[Md.9] Axis in which the error occurred
1338					[Md.10] Axis error No.
1467					[Md.51] Axis error occurrence (Year: month)
1339					[Md.11] Axis error occurrence (Day: hour)
1340					[Md.12] Axis error occurrence (Minute: second)
1341				Error history 12	[Md.9] Axis in which the error occurred
1342					[Md.10] Axis error No.
1468					[Md.51] Axis error occurrence (Year: month)
1343					[Md.11] Axis error occurrence (Day: hour)
1344					[Md.12] Axis error occurrence (Minute: second)
1345				Error history 13	[Md.9] Axis in which the error occurred
1346					[Md.10] Axis error No.
1469					[Md.51] Axis error occurrence (Year: month)
1347					[Md.11] Axis error occurrence (Day: hour)
1348					[Md.12] Axis error occurrence (Minute: second)
1349				Error history 14	[Md.9] Axis in which the error occurred
1350					[Md.10] Axis error No.
1470					[Md.51] Axis error occurrence (Year: month)
1351					[Md.11] Axis error occurrence (Day: hour)
1352					[Md.12] Axis error occurrence (Minute: second)
1353				Error history 15	[Md.9] Axis in which the error occurred
1354					[Md.10] Axis error No.
1471					[Md.51] Axis error occurrence (Year: month)
1355					[Md.11] Axis error occurrence (Day: hour)
1356					[Md.12] Axis error occurrence (Minute: second)
1357				[Md.13] Error history pointer	
1358				Warning history 0	[Md.14] Axis in which the warning occurred
1359					[Md.15] Axis warning No.
1472					[Md.52] Axis warning occurrence (Year: month)
1360					[Md.16] Axis warning occurrence (Day: hour)
1361					[Md.17] Axis warning occurrence (Minute: second)

FA-A-0060-C

Buffer memory address				Item	
Axis 1	Axis 2	Axis 3	Axis 4		
1362				Warning history 1	[Md.14] Axis in which the warning occurred
1363					[Md.15] Axis warning No.
1473					[Md.52] Axis warning occurrence (Year: month)
1364					[Md.16] Axis warning occurrence (Day: hour)
1365					[Md.17] Axis warning occurrence (Minute: second)
1366				Warning history 2	[Md.14] Axis in which the warning occurred
1367					[Md.15] Axis warning No.
1474					[Md.52] Axis warning occurrence (Year: month)
1368					[Md.16] Axis warning occurrence (Day: hour)
1369					[Md.17] Axis warning occurrence (Minute: second)
1370				Warning history 3	[Md.14] Axis in which the warning occurred
1371					[Md.15] Axis warning No.
1475					[Md.52] Axis warning occurrence (Year: month)
1372					[Md.16] Axis warning occurrence (Day: hour)
1373					[Md.17] Axis warning occurrence (Minute: second)
1374				Warning history 4	[Md.14] Axis in which the warning occurred
1375					[Md.15] Axis warning No.
1476					[Md.52] Axis warning occurrence (Year: month)
1376					[Md.16] Axis warning occurrence (Day: hour)
1377					[Md.17] Axis warning occurrence (Minute: second)
1378				Warning history 5	[Md.14] Axis in which the warning occurred
1379					[Md.15] Axis warning No.
1477					[Md.52] Axis warning occurrence (Year: month)
1380					[Md.16] Axis warning occurrence (Day: hour)
1381					[Md.17] Axis warning occurrence (Minute: second)
1382				Warning history 6	[Md.14] Axis in which the warning occurred
1383					[Md.15] Axis warning No.
1478					[Md.52] Axis warning occurrence (Year: month)
1384					[Md.16] Axis warning occurrence (Day: hour)
1385					[Md.17] Axis warning occurrence (Minute: second)
1386				Warning history 7	[Md.14] Axis in which the warning occurred
1387					[Md. 15] Axis warning No.
1479					[Md.52] Axis warning occurrence (Year: month)
1388					[Md.16] Axis warning occurrence (Day: hour)
1389					[Md.17] Axis warning occurrence (Minute: second)
1390				Warning history 8	[Md.14] Axis in which the warning occurred
1391					[Md.15] Axis warning No.
1480					[Md.52] Axis warning occurrence (Year: month)
1392					[Md.16] Axis warning occurrence (Day: hour)
1393					[Md.17] Axis warning occurrence (Minute: second)
1394				Warning history 9	[Md.14] Axis in which the warning occurred
1395					[Md.15] Axis warning No.
1481					[Md.52] Axis warning occurrence (Year: month)
1396					[Md.16] Axis warning occurrence (Day: hour)
1397					[Md.17] Axis warning occurrence (Minute: second)

TECHNICAL BULLETIN

FA-A-0060-C

Buffer memory address				Item	
Axis 1	Axis 2	Axis 3	Axis 4		
1398				Warning history 10	[Md.14] Axis in which the warning occurred
1399					[Md.15] Axis warning No.
1482					[Md.52] Axis warning occurrence (Year: month)
1400					[Md.16] Axis warning occurrence (Day: hour)
1401					[Md.17] Axis warning occurrence (Minute: second)
1402				Warning history 11	[Md.14] Axis in which the warning occurred
1403					[Md.15] Axis warning No.
1483					[Md.52] Axis warning occurrence (Year: month)
1404					[Md.16] Axis warning occurrence (Day: hour)
1405					[Md.17] Axis warning occurrence (Minute: second)
				Warning history 12	[Md.14] Axis in which the warning occurred
1407					[Md.15] Axis warning No.
1484					[Md.52] Axis warning occurrence (Year: month)
1408					[Md.16] Axis warning occurrence (Day: hour)
1409					[Md.17] Axis warning occurrence (Minute: second)
1410				Warning history 13	[Md.14] Axis in which the warning occurred
1411					[Md.15] Axis warning No.
1485					[Md.52] Axis warning occurrence (Year: month)
1412					[Md.16] Axis warning occurrence (Day: hour)
1413					[Md. 17] Axis warning occurrence (Minute: second)
1414				Warning history 14	[Md.14] Axis in which the warning occurred
1415					[Md.15] Axis warning No.
1486					[Md.52] Axis warning occurrence (Year: month)
1416					[Md.16] Axis warning occurrence (Day: hour)
1417					[Md.17] Axis warning occurrence (Minute: second)
1418				Warning history 15	[Md.14] Axis in which the warning occurred
1419					[Md.15] Axis warning No.
1487					[Md.52] Axis warning occurrence (Year: month)
1420					[Md.16] Axis warning occurrence (Day: hour)
1421					[Md.17] Axis warning occurrence (Minute: second)
1422				[Md.18] Warning history pointer	
$\begin{aligned} & 1424 \\ & 1425 \end{aligned}$				[Md.19] No. of write accesses to flash ROM	

FA-A-0060-C

Axis monitor data [Md.]

Buffer memory address				Item
Axis 1	Axis 2	Axis 3	Axis 4	
800	900	1000	1100	[Md.20] Current feed value
801	901	1001	1101	
802	902	1002	1102	[Md.21] Machine feed value
803	903	1003	1103	
804	904	1004	1104	[Md.22] Feedrate
805	905	1005	1105	
806	906	1006	1106	[Md.23] Axis error No.
807	907	1007	1107	[Md.24] Axis warning No.
808	908	1008	1108	[Md.25] Valid M code
809	909	1009	1109	[Md.26] Axis operation status
810	910	1010	1110	[Md.27] Current speed
811	911	1011	1111	
812	912	1012	1112	[Md.28] Axis feedrate
813	913	1013	1113	
814	914	1014	1114	[Md.29] Speed-position switching control positioning amount
815	915	1015	1115	
816	916	1016	1116	[Md.30] External input/output signal
817	917	1017	1117	[Md.31] Status
818	918	1018	1118	[Md.32] Target value
819	919	1019	1119	
820	920	1020	1120	[Md.33] Target speed
821	921	1021	1121	
824	924	1024	1124	[Md.34] Movement amount after near-point dog ON
825	925	1025	1125	
826	926	1026	1126	[Md.35] Torque limit stored value
827	927	1027	1127	[Md.36] Special start data instruction code setting value
828	928	1028	1128	[Md.37] Special start data instruction parameter setting value
829	929	1029	1129	[Md.38] Start positioning data No. setting value.
830	930	1030	1130	[Md.39] In speed limit flag
831	931	1031	1131	[Md.40] In speed change processing flag
832	932	1032	1132	[Md.41] Special start repetition counter
833	933	1033	1133	[Md.42] Control system repetition counter
834	934	1034	1134	[Md.43] Start data pointer being executed
835	935	1035	1135	[Md.44] Positioning data No. being executed
836	936	1036	1136	[Md.45] Block No. being executed
837	937	1037	1137	[Md.46] Last executed positioning data No.
838 to 847	938 to 947	$\begin{aligned} & 1038 \text { to } \\ & 1047 \end{aligned}$	1138 to 1147	[Md.47] Positioning data being executed
899	999	1099	1199	[Md.48] Deceleration start flag

FA-A-0060-C

11.3 Control Data [Cd.]

Buffer memory address				Item
Axis 1	Axis 2	Axis 3	Axis 4	
1500	1600	1700	1800	[Cd.3] Positioning start No.
1501	1601	1701	1801	[Cd.4] Positioning starting point No.
1502	1602	1702	1802	[Cd.5] Axis error reset
1503	1603	1703	1803	[Cd.6] Restart command
1504	1604	1704	1804	[Cd.7] M code OFF request
1505	1605	1705	1805	[Cd.8] External command valid
$\begin{aligned} & 1506 \\ & 1507 \end{aligned}$	$\begin{aligned} & 1606 \\ & 1607 \end{aligned}$	$\begin{aligned} & 1706 \\ & 1707 \end{aligned}$	$\begin{array}{\|l\|} 1806 \\ 1807 \\ \hline \end{array}$	[Cd.9] New current value
$\begin{aligned} & 1508 \\ & 1509 \end{aligned}$	$\begin{aligned} & 1608 \\ & 1609 \end{aligned}$	$\begin{aligned} & 1708 \\ & 1709 \end{aligned}$	$\begin{array}{\|l\|} 1808 \\ 1809 \end{array}$	[Cd.10] New acceleration time value
$\begin{aligned} & 1510 \\ & 1511 \end{aligned}$	$\begin{aligned} & 1610 \\ & 1611 \end{aligned}$	$\begin{aligned} & 1710 \\ & 1711 \end{aligned}$	$\begin{aligned} & 1810 \\ & 1811 \end{aligned}$	[Cd.11] New deceleration time value
1512	1612	1712	1812	[Cd.12] Acceleration/deceleration time change during speed change, enable/disable selection
1513	1613	1713	1813	[Cd.13] Positioning operation speed override
$\begin{aligned} & 1514 \\ & 1515 \end{aligned}$	$\begin{aligned} & 1614 \\ & 1615 \end{aligned}$	$\begin{aligned} & 1714 \\ & 1715 \end{aligned}$	$\begin{aligned} & 1814 \\ & 1815 \end{aligned}$	[Cd.14] New speed value
1516	1616	1716	1816	[Cd.15] Speed change request
1517	1617	1717	1817	[Cd.16] Inching movement amount
$\begin{aligned} & 1518 \\ & 1519 \end{aligned}$	$\begin{aligned} & 1618 \\ & 1619 \end{aligned}$	$\begin{aligned} & 1718 \\ & 1719 \end{aligned}$	$\begin{array}{\|l\|} \hline 1818 \\ 1819 \end{array}$	[Cd.17] JOG speed
1520	1620	1720	1820	[Cd.18] Continuous operation interrupt request
1521	1621	1721	1821	[Cd.19] OPR request flag OFF request
$\begin{aligned} & 1522 \\ & 1523 \end{aligned}$	$\begin{aligned} & 1622 \\ & 1623 \end{aligned}$	$\begin{aligned} & 1722 \\ & 1723 \end{aligned}$	$\begin{array}{\|l\|} 1822 \\ 1823 \end{array}$	[Cd.20] Manual pulse generator 1 pulse input magnification
1524	1624	1724	1824	[Cd.21] Manual pulse generator enable flag
1525	1625	1725	1825	[Cd.22] New torque value
$\begin{aligned} & 1526 \\ & 1527 \end{aligned}$	$\begin{aligned} & 1626 \\ & 1627 \end{aligned}$	$\begin{aligned} & 1726 \\ & 1727 \end{aligned}$	$\begin{aligned} & 1826 \\ & 1927 \end{aligned}$	[Cd.23] Speed-position switching control movement amount change register
1528	1628	1728	1828	[Cd.24] Speed-position switching enable flag
1529	1629	1729	1829	Use prohibited
$\begin{aligned} & 1530 \\ & 1531 \end{aligned}$	$\begin{aligned} & 1630 \\ & 1631 \end{aligned}$	$\begin{aligned} & 1730 \\ & 1731 \end{aligned}$	$\begin{array}{\|l\|} 1830 \\ 1831 \end{array}$	[Cd.25] Position-speed switching control speed change register
1532	1632	1732	1832	[Cd.26] Position-speed switching enable flag
1533	1633	1733	1833	Use prohibited
$\begin{aligned} & 1534 \\ & 1535 \end{aligned}$	$\begin{aligned} & 1634 \\ & 1635 \end{aligned}$	$\begin{aligned} & 1734 \\ & 1735 \end{aligned}$	$\begin{array}{\|l\|} \hline 1834 \\ 1835 \end{array}$	[Cd.27] Target position change value (new address)
$\begin{aligned} & 1536 \\ & 1537 \end{aligned}$	$\begin{array}{\|l\|} \hline 1636 \\ 1637 \end{array}$	$\begin{array}{\|l\|} \hline 1736 \\ 1737 \end{array}$	$\begin{array}{\|l\|} 1836 \\ 1837 \end{array}$	[Cd.28] Target position change value (new speed)
1538	1638	1738	1838	[Cd.29] Target position change request flag
1539	1639	1739	1839	Use prohibited
1540	1640	1740	1840	[Cd.30] Simultaneous starting axis start data No. (axis 1 start data No.)
1541	1641	1741	1841	[Cd.31] Simultaneous starting axis start data No. (axis 2 start data No.)
1542	1642	1742	1842	[Cd.32] Simultaneous starting axis start data No. (axis 3 start data No.)
1543	1643	1743	1843	[Cd.33] Simultaneous starting axis start data No. (axis 4 start data No.)
1544	1644	1744	1844	[Cd.34] Step mode
1545	1645	1745	1845	[Cd.35] Step valid flag
1546	1646	1746	1846	[Cd.36] Step start information

FA-A-0060-C

Buffer memory address			Item	
Axis 1	Axis 2	Axis 3	Axis 4	
1547	1647	1747	1847	[Cd.37] Skip command
1548	1648	1748	1848	[Cd.38] Teaching data selection
1549	1649	1749	1849	[Cd.39] Teaching positioning data No.
1550	1650	1750	1850	[Cd.40] ABS direction in degrees
1900		[Cd.1] Flash ROM write request		
1901	[Cd.2] Parameter initialization request			
1905		[Cd.41] Deceleration start flag valid		
1907		[Cd.42] Stop command processing for deceleration stop selection		

11.4 Positioning Data [Da.]

Positioning data

Buffer memory address	Item				
Axis 1	Axis 2	Axis 3	Axis 4		
2000	8000	14000	20000		

FA-A-0060-C

Starting block 0

Buffer memory address				Item	
Axis 1	Axis 2	Axis 3	Axis 4		
26000	27000	28000	29000	Block start data 1st point	[Da.11] Shape [Da.12] Start data No.
26050	27050	28050	29050		[Da.13] Special start instruction [Da.14] Parameter
26001	27001	28001	29001	Block start data 2nd point	
26051	27051	28051	29051		
26002	27002	28002	29002	Block start data 3rd point	
26052	27052	28052	29052		
!	!	!	!	!	
26049	27049	28049	29049	Block start data 50th point	
26099	27099	28099	29099		
26100	27100	28100	29100	Condition data No. 1	[Da.15] Condition target
					[Da.16] Condition operator
26102	27102	28102	29102		[Da.17] Address
26103	27103	28103	29103		
26104	27104	28104	29104		[Da.18] Parameter 1
26405	27405	28405	29405		
26106	27106	28106	29106		[Da.19] Parameter 2
26107	27107	28107	29107		
26110 to	27110 to	28110 to	29110 to	Condition data No. 2	
26119	27119	28119	29119		
26120 to	27120 to	28120 to	29120 to	Condition data No. 3	
26129	27129	28129	29129		
\vdots	\vdots	!	\vdots	!	
26190 to	27190 to	28190 to	29190 to	Condition data No. 10	
26199	27199	28199	29199		

Starting block 1

Buffer memory address			Item	
Axis 1	Axis 2	Axis 3	Axis 4	
26200 to	27200 to	28200 to	29200 to	Block start data
26299	27299	28299	29299	
26300 to	27300 to	28300 to	29300 to	Condition data
26399	27399	28399	29399	

Starting block 2

Buffer memory address			Item	
Axis 1	Axis 2	Axis 3	Axis 4	
26400 to	27400 to	28400 to	29400 to	Block start data
26499	27499	28499	29499	
26500 to	27500 to	28500 to	29500 to	Condition data
26599	27599	28599	29599	

FA-A-0060-C

Starting block 3

Buffer memory address			Item	
Axis 1	Axis 2	Axis 3	Axis 4	
26600 to	27600 to	28600 to	29600 to	Block start data
26699	27699	28699	29699	
26700 to	27700 to	28700 to	29700 to	Condition data
26799	27799	28799	29799	

Starting block 4

Buffer memory address			Item	
Axis 1	Axis 2	Axis 3	Axis 4	
26800 to	27800 to	28800 to	29800 to	Block start data
26899	27899	28899	29899	
26900 to	27900 to	28900 to	29900 to	Condition data
26999	27999	28999	29999	

Programmable controller CPU memory area

Buffer memory address			Item
Axis 1	Axis 2	Axis 3	Axis 4

REVISIONS

Version	Date of Issue	Revision
-	April 2009	First edition
A	May 2010	(3) in Section 2.2 "Servo amplifier connection example" was reviewed.
B	September 2017	The descriptions of the QD75PDN/QD75DDN were added.
C	July 2019	• Available for e-Manual Viewer • Section 5.2 was reviewed.

[^0]: <Torque change command pulse>
 <Write of torque limit value in Q62DA>

[^1]: <Stop command pulse>
 <Stop execution>
 <Axis stop signal OFF due to axis stop>

