High-definition Locator

Outline

High-precision positioning unit to estimate the vehicle position in the driving lane using quasi-zenith satellites (QZS) positioning augmentation signal under the 4 satellites operation from April 2018.

Features

Mitsubishi Electric started the production of world first GPS based car navigation in 1990, and using the advantage of QZS development, we provide high-precision positioning unit which integrates the low-cost composite receiver of positioning augmentation signal and GNSS.

1. **Positioning function**
 - CLAS enhanced RTK-PPP/SBAS enhancement 2 frequency PPP
 - 3D autonomous navigation with 6 axis IMU, composite positioning with GNSS
 - Driving lane identification with on-board camera and High-definition map, white line relative positioning
 - Position update frequency 10 Hz, Position estimation error output

2. **ADAS function**
 - Create driving route as lane level
 - Create recommendation lane as lane level
 - Output High-definition map data contents

3. **High-definition map**
 - Car navigation road data as road level
 - Lane level data (Only highway across the country)
 - Map update function

4. **Main application**
 - Active safety, Semi-autonomous driving (level 3), Car navigation

<H/W outline>

- 2 frequency GNSS receiver for automotive use
- CLAS augmentation signal composite chip
- 6 axis IMU (3 axis Gyro & 3 axis acceleration sensor)
- SD memory for High-definition map
- Input/output I/F : Ethernet/CAN/CAN-FD/USB

- CLAS : Centimeter Level Augmentation Service
- SBAS : Satellite-Based Augmentation Systems
- RTK : Real Time Kinematic
- PPP : Precise Point Positioning
- IMU : Inertial Measurement Unit
Positioning functions

Developing positioning unit to realize high-precision at any time and any place.

Utilize augmentation signal of quasi-zenith
Receive PPP positioning and augmentation signal obtained at the reference observation point, and calculate own position at centimeter class.

Autonomous navigation technology
Using 6-axis IMU, measure attitude angle and three-dimensional position. Calculate high-precision position even when the GNSS radio wave is interrupted.

Complex positioning
With complex positioning using GNSS positioning, autonomous navigation, and High-definition map, calculate high-precision own position with a high probability (50% to more than 95%).

GNSS positioning & reliability evaluation technology
Using GNSS Raw data, evaluate GNSS positioning error and perform high-precision position calculation.

Measurement technology /High-definition map maintenance
With Mobile Mapping System (MMS), make a database of road shape at each lane less than several tens centimeter error of accuracy.

PPP : Precise Point Positioning
CLAS : Centimeter Level Augmentation Service

©2017 Mitsubishi Electric Corporation
ADAS function

With High-definition map and positioning information, realize accuracy improvement for semi-autonomous driving and drive assistance function.

- **High-precision own position calculation**
 Positioning technology calculates high-precision own position

- **Road data creation as lane level**
 With High-definition map data, describe lane center line position as triaxial spatial coordinate dot sequence of X, Y & Z and describe road more accurately.

- **High-definition map contents**
 Not only high-precision road shape data, speed limit, stop line, train crossing stop line, signal and road sign position are stored.

- **ADAS-ECU (Semi-autonomous driving)**
 Using high-precision own position and road shape data, realize lane-keeping driving. Lane change is possible using the recommended lane position created form navigation route.

- **ADAS-ECU (Traffic sign Indication)**
 Using coordination position of High-definition map and sign position (3D), only required speed limit sign can be obtained by camera. (prevent false detection by camera)