

Numerical Control (CNC) NC Specification Selection Guide M800/M80/E80/C80 Series

- M800W Series
- M800S Series
- M80W Series
- M80 Series
- E80 Series
- C80 Series

Global Player Contents

GLOBAL IMPACT OF MITSUBISHI ELECTRIC

Through Mitsubishi Electric's vision, "Changes for the Better" are possible for a brighter future.

Changes for the Better

"Changes for the Better" represents the Mitsubishi Electric Group's attitude to "always strive to achieve something better", as we continue to change and grow. Each one of us shares a strong will and passion to continuously aim for change, reinforcing our commitment to creating "an even better tomorrow".

Mitsubishi Electric is involved in many areas including the following:

Energy and Electric Systems

A wide range of power and electrical products from generators to large-scale displays.

Electronic Devices

A wide portfolio of cutting-edge semiconductor devices for systems and products.

Home Appliance

Dependable consumer products like air conditioners and home entertainment systems.

Information and Communication Systems

Commercial and consumer-centric equipment, products and systems.

Industrial Automation Systems

Maximizing productivity and efficiency with cutting-edge automation technology.

Our advances in Al and IoT are

adding new value to society in

OVERVIEW

CNC LINEUP		••••••	•••••	3
SELECTION PROCEDURE		•••••	•••••	4
PRODUCT LINES (M800/M8) PRODUCT LINES (C80 Serie	0/E80 Series) es)			5 7
M800/M80/E80/C80 SERIES	LINEUP	•••••	•••••	9
CNC SYSTEM		•••••	•••••	11
M800/M80/E80/C80 SERIES SPECIFICATIC CONTROL UNIT/DISPLAY UNIT GENERAL CONNECTION DIAGRAM:	47	I/O UNIT AND C	OTHERSS	49
DRIVE SYSTEM	•••••	••••••	•••••	77
SYSTEM CONFIGURATIONSPECIFICATIONSTYPE				85
SERVO MOTOR /DIRECT-DF	TM-RB Series ······	99	LM-F Series······	100
SPINDLE MOTOR /BUILT-IN SE				_
SJ-D Series	SJ-DG Series ······ SJ-DN Series······· SJ-BG Series······· HG-JR Series ······	··········· 107 ······ 112	SJ-DJ Series ········· SJ-V Series ·········· SJ-B Series ··········· HG Series ········	······ 108 ····· 116
SERVO MOTOR /LINEAR SE				
HG-H Series 123	HQ-H Series ·······		LM-F Series	
SPINDLE MOTOR /BUILT-IN SE SJ-4-V Series 126 HG-JR Series 130	PINDLE MOTOF SJ-4BG Series·····		NDLE MOTOR 400 SJ-4BGS Series ······	
DRIVE UNIT	•••••		•••••	131
MDS-E Series ······· 131 MDS-EJ/EJH Series ······ 138	MDS-EH Series ··· MDS-EX-CVP Ser		MDS-EM/EMH Series	136
SELECTION		••••••	•••••	·····143
DRIVE SYSTEM DEDICATED	OPTIONS/CA	BLES		·····156
SERVO OPTIONS ENCODER INTERFACE UNITSELECTION OF CABLES AND CONNE	167	DRIVE UNIT OF	DNS TIONS	170
SOFTWARE TOOLS	•••••	•••••	•••••	193
GLOBAL SALES & SERVICE	NETWORK			105

2

4

8

9

10

11

12

ı

14

L

CNC LINEUP

M800W

Premium CNC provides expandability and flexibility

- ·Separated type, a control unit separated from display
- ·Windows-based display is included in the lineup, which provides excellent expandability
- Four expansion slots are provided as standard specifications, allowing for expansion using option

M800S

High-grade CNC well suited to high-speed high-accuracy machining and multi-axis multi-part system control

- •Panel-in type, a control unit with integrated display
- •Multi-CPU architecture allows for high performance and high functional graphics
- Non-Windows-based display provides easy operability

M80W

Standard CNC with expandability and flexibility

- Separated type, a control unit separated from display
- ·Windows-based display is included in the lineup, which provides excellent expandability
- · Packaged type for selecting a machine type easily
- •Two expansion slots are provided as standard specifications, allowing for expansion using option cards slot

M80

Standard CNC provides high productivity and easy operability

- ·Panel-in type, a control unit with integrated display
- •Provided in package (TypeA/TypeB) for easier
- ·Non-Windows-based display provides easy operability

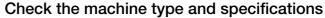
E80

Simple CNC E80 Series, offering easy operability and high cost performance

- •Panel-in type, a control unit with integrated display
- Provided in package (TypeA/TypeB) for easier
- Non-Windows-based display provides easy operability

C80

iQ Platform compatible CNC C80 Series incorporated with Mitsubishi's state-of-the-art technologies


- •Easy linkage with many and varied MELSEC units.
- •MELSEC sequencer for PLC and GOT2000 for display unit are used.
- •Three of C80 can be mounted on one base and the control system with up to 21 part systems/48 axes can be established.

SELECTION PROCEDURE

Selection procedure flow chart

Start selecting the NC specifications!

STEP 1

- Machine type: lathe / machining center / grinding machine / special-purpose machine, etc.
- Details of control, required accuracy, with/without auxiliary axes (for workpiece feeding, turret, etc.)

STEP 2 Decide the NC specifications

P4

- Number of axes, axis configuration, number of part systems, with/without spindles, number of I/O points
- · Check the position detection method and detection performance (absolute/relative position, number of pulses)
- · Select the size of the display unit, keyboard

STEP 3 Decide the servo motor

P96

P102

- Select the servo motor capacity (NC Servo Selection)
- · Check the outline dimensions, encoder, and whether it has a scale or break

STEP 4 Decide the spindle motor

- · Check the spindle's base/maximum rotation speed, output, torque, outline dimensions and whether it has a keyway
- · Frame-type or built-in spindle motor
- · With/without optional specifications (orientation, spindle/C-axis, synchronization, etc.)
- · Check the C axis accuracy and the speed (when C axis is used)

STEP 5 Decide the drive unit

P131

- · Check the capacity and the dimensions of a drive unit
- Check the power regeneration/resistor regeneration

STEP 6 Decide the power supply unit

P143

Select the power supply unit only when a power regenerative drive unit is used

STEP 7 Decide the hardware options

P45,P69,P176

- Check the options (manual pulse generator, synchronous encoder, vibration cutting control, availability of network connection and PLC connection, etc.)
- · Check the required cables and connectors

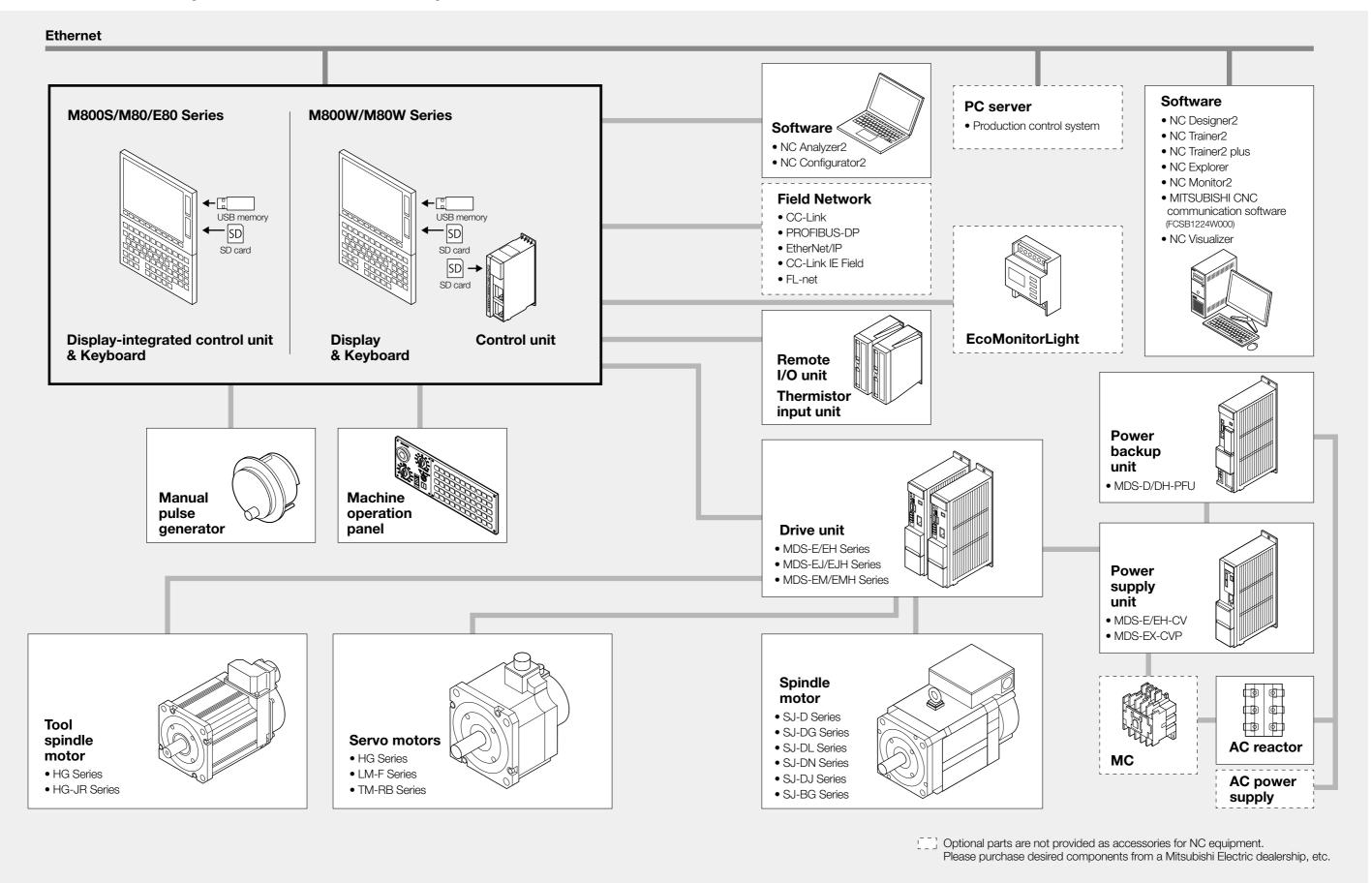
STEP 8 Decide the software options

P11

- Check the number of programs stored (memory capacity), number of variable sets, etc.
- · Check the required functions

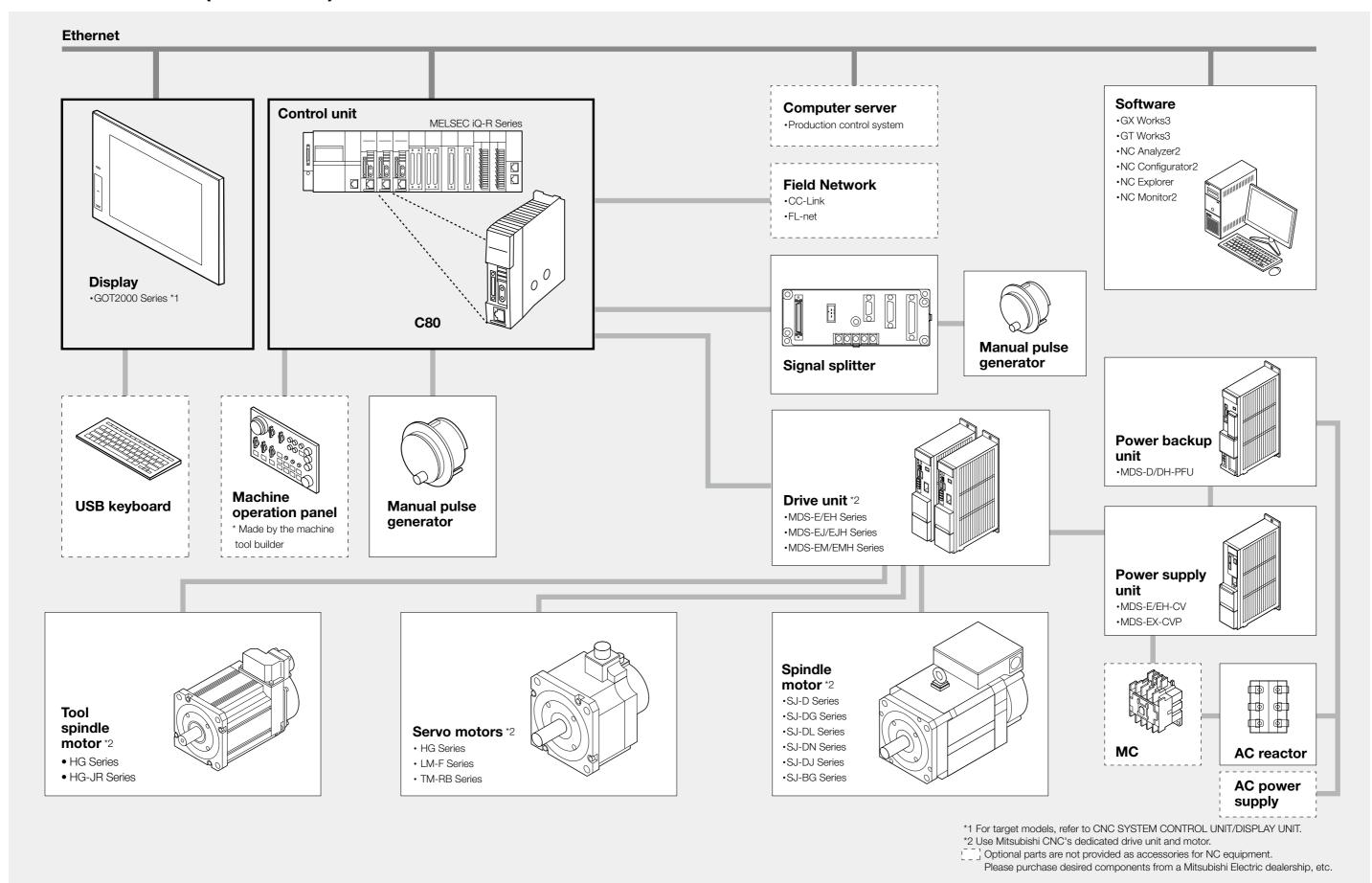
Check the development tools

P193



Check the screen development tool (when screen customization is required)

NC specification selection completed!


PRODUCT LINES (M800/M80/E80 Series)

PRODUCT LINES (M800/M80/E80 Series)

PRODUCT LINES (C80 Series)

PRODUCT LINES (C80 Series)

M800/M80/E80/C80 SERIES LINEUP

WISOU/WISO/ESO/CSO SERIES LIN																	
							Lathe	system									
					A A A A A A A A A A A A A A A A A A A			# 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		And the second s							
		(Display/C separate		(Display/Co		(Display/Conseparated		(Display/C		(Display/C	control unit ed-type)						
Marala		M800W	/ Series	M800S	Series	M80W Series		M80 \$	Series	E80 S	Series	C80 Series					
Mode	I name	M850W	M830W	M850S	M830S	_		TypeA	TypeB	TypeA	TypeB	_					
	Max. number of axes (NC axes + Spindles + PLC axes)	3:	2	32	2	12		12	9	8	6	16					
Z	Max. number of NC axes (in total for all the part systems)	3:	2	32)	10		10	7	5	4	16					
nber	Max. number of spindles	8	3	8		4+G/E	3 (*2)	4+G/B(*2)	4	3	3	7					
of co	Max. number of PLC axes	8		8		6		6	3	3	3	8					
Number of control axes	Max. number of PLC indexing axes				4		4	1	1	1	8						
axes	Number of simultaneous	8 4 8 4		4	4				4	1	4						
	contouring control axes Max. number of NC axes in a part system	1:	2	12	2	8		8	5	5	4	8					
Max. r	number of part systems (main + sub)	8		8		4		4	2	-	1	7					
	number of main part systems	8		8		2		2	2		1	7					
	number of sub part systems	8		8		2		2 1		1		2					
Control	unit-side High-speed program server mode	Avail	able	_		Available		_		_		_					
	unit-side High-speed program server mode	Availabl		Availa	able	Available/— (*3)		Available		Available		_					
	igh-speed program server mode					_		L				Available					
	side SD card mode				Availal	ole					_						
Front-	side USB memory mode	Available								_							
Least	command increment	1nm 1nm 0.1µm 0.1µm 0.1µm								0.1µm							
Least	control increment	Inm Inm				ım				-							
Numb	per of tool offset sets	99	9	99	9	256		256 99		9	9	256					
Max. ı	program capacity	2,00 (5,12 (1,000pr	20m)	2,000 (5,12 (1,000pro	0m)	500k (1,280 (1,000pro	m)	500 (1,28 (1,000pr	30m)	(60	OkB Om) ograms)	2,000kB (5,120m) (1,000programs)					
Max. I	PLC program capacity [steps]	512,	000	512,	000	64,00	00	64,000	32,000	20,	000	Available (MELSEC					
Multi-p	roject [number of PLC projects stored]	6	3	6		3	3	1			1	_					
Interac	ctive cycle insertion					Availal	ole										
High-sp	peed machining mode I maximum [kBPM]	33	.7	33.	7	33.7		33.7	-	-	-	33.7					
High-sp	peed machining mode II maximum [kBPM]	16	88	16	8	67.5	·	67.5	_	-		67.5					
High-spe	eed high-accuracy control I maximum [kBPM]	67	.5	67.	5	33.7		33.7	_	-	-	33.7					
High-spe	eed high-accuracy control II maximum [kBPM]	16	88	16	8	67.5	i	67.5				67.5					
High-spe	eed high-accuracy control III maximum [kBPM]																
High																	
i-ign-t	accuracy control						Avai	lable									
	control (Super Smooth Surface)				Avai	lable	Avai	lable		(eSSS su	pported.)						
SSS c					Avai	lable Availal		lable		(eSSS su	pported.)	_ _					
SSS c	control (Super Smooth Surface)				Avai		ole	lable		(eSSS su	pported.)						
SSS c	control (Super Smooth Surface)				Avai	Availal	ole ole	lable		(eSSS su	pported.)						
SSS of Toleran	control (Super Smooth Surface) nce control nk (Master/Local)				Avai	Availal Availal	ble ble	lable		(eSSS su	pported.)						
SSS of Tolerand CC-Line PROFEMES in MES in the second control of t	control (Super Smooth Surface) nce control nk (Master/Local) ilBUS-DP (Master)					Availal Availal Availal	ble ble	lable		(eSSS su	pported.)						
SSS of Toleral CC-Lii PROF MES ii Smart	control (Super Smooth Surface) nce control nk (Master/Local) IBUS-DP (Master) nterface library	19-type touchs horizontal touch type touchscree touchscreen ca	chscreen, 15- n, or 10.4-type	15-type tou or 10.4 touchs can be s	Avai ichscreen -type creen	Availal Availal Availal Availal	ole ole ole en, 19-type een, 15-type te buchscreen,	15-type to 10.4- touchscre type can b	type, en or 8.4-	-	pported.)	Available (MELSEC					

 $^{^{\}star} \, \text{Maximum specifications including optional specifications are listed. Refer to the Specifications List for the details of each option.} \\$

M800/M80/E80/C80 SERIES LINEUP

				Machining c	enter sys	tem			
		And the state of t		The state of the s	# 1 12-				
		(Display/Control unit separated-type)	(Display/Control unit integrated-type)	(Display/Control unit separated-type)		Control unit ed-type)		Control unit ed-type)	
		M800W Series	M800S Series	M80W Series		Series		Series	C80 Series
Mode	el name	M850W M830W	M850S M830S	_	ТуреА	ТуреВ	TypeA	TypeB	_
	Max. number of axes (NC axes + Spindles + PLC axes)	32	32	11	11	9	6	4	16
7	Max. number of NC axes	16	16	8	8	6	5(*1)	3	16
Number of control axes	(in total for all the part systems) Max. number of spindles	4	4	2		2		1	7
er of c	Max. number of PLC axes	8	8	6		<u>-</u> 	2	0	8
ontro	Max. number of PLC indexing axes	8	8	4		1	1	0	8
axes	Number of simultaneous	8 4	8 4	4		4	4	3	4
	contouring control axes Max. number of								
	NC axes in a part system	12	12	8	8	5	5 ^(*1)	3	8
	number of part systems (main + sub)	2	2	2	2 1			1	7
	number of main part systems	2	2	2	2 1			1	7
	number of sub part systems	2	2	_			-	_	_
	unit-side High-speed program server mode	Available Available/— (*3)	Available	Available Available/— (*3)	Available		A	lable.	_
	unit-side High-speed program server mode nigh-speed program server mode	Available/— (9	Available	Available/— (9)	Avai	iadie	Avai	lable	Available
	-side SD card mode			Available					Available
	-side USB memory mode			Available					_
	command increment	1nm	1nm	0.1µm	0.1	μm	0.1µm	1µm	0.1µm
Least	control increment			1r	nm		0.1μm 1μm		
Numb	per of tool offset sets	999	999	400	400	400	200	99	400
Max.	program capacity	2,000kB (5,120m) (1,000programs)	2,000kB (5,120m) (1,000programs)	500kB (1,280m) (1,000programs)	(1,28	OkB 30m) rograms)	(1,28	OkB 30m) rograms)	2,000kB (5,120m) (1,000programs)
Max.	PLC program capacity [steps]	512,000	512,000	64,000	64,000	32,000	20,	000	Available (MELSEC)
Multi-p	project [number of PLC projects stored]	6	6	3	3	1		1	_
Intera	active cycle insertion			Available					_
	peed machining mode I maximum [kBPM]	33.7	33.7	33.7	33.7	16.8	-		33.7
	peed machining mode II maximum [kBPM]	168	168	67.5		7.5	-	_	67.5
	need high-accuracy control I maximum [kBPM]	67.5	67.5	33.7		3.7	-		33.7
	peed high-accuracy control II maximum [kBPM]	168 270	168	67.5	135	7.5	_	_	67.5 135
-	accuracy control	270	270	Available	133	_	_	_ 	Available
	control (Super Smooth Surface)		Avoi	ilable			(eSSS supported.)		Available
	ance control		_	Available					
	ink (Master/Local)			Available (MELSEC					
	FIBUS-DP (Master)	Available Available							
	interface library	Available Available							_
	t Safety observation		Ava	ilable			_	_	Available
Displa	ay unit ^{ra)}	19-type touchscreen, 19-type horizontal touchscreen, 15- type touchscreen, or 10.4-type touchscreen		19-type touchscreen, 19-type horizontal touchscreen, 15-type touchscreen, 10.4-type, ouchscreen, 10.4-type touchscreen or 8.4-		8.4-	type	12.1-type touchscreen, 10.4-type touchscreen, 8. type touchscreen or 5.7-type	
		touchscreen can be selected	or 8.4-type can be selected	selected type can be selected (*3)				touchscreen can be selecte	

^(*1) Rotary axis up to 1 axis

^(*2) G/B: Guide Bush

^(*3) Windows-based dispaly unit/non-Windows-based displpay unit

^(*4) For details, refer to "CNC SYSTEM CONTROL UNIT/DISPLAY UNIT" described later.

CNC SYSTEM M800/M80/E80/C80 SERIES SPECIFICATIONS LIST

		Mac	00W	Ma	00S		Lathe system M80W M80 E80				C80
	class -	M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_
	trol axes						,,	71	71		
1 C	control axes Number of basic control axes (NC axes)	02	02	02	02	02	02	02	02	02	02
H		016	016	016	016						
2	2 Max. number of axes (NC axes + Spindles + PLC axes)	∆32	∆32	∆32	∆32	12	12	9	8	6	16
	1 Max. number of NC axes (in total for all the part systems)	O16 ∆32	O16 ∆32	O16 ∆32	O16 ∆32	10	10	7	5	4	16
	2 Max. number of spindles	8	8	8	8	4+G/B*2	4+G/B*2	4	3	3	7
L	3 Max. number of PLC axes	8	8	8	8	6	6	6	3	3	8
_	Max. number of PLC indexing axes Number of simultaneous contouring control axes	8	8	8	8	4	4	4	1 4	1 4	8
H	6 Max. number of NC axes in a part system	08	08	08	08	8	8	5	5	4	8
_	Wax. number of NC axes in a part system	∆12	∆12	∆12	∆12				5	4	
7		0	0	0	0	0	0	0	_	_	0
2 C	control part system	-	1	1	1	4	4	I 4	1	1	- 1
+	Standard number of part systems	04	04	04	04	1	1	1	1	1	1
2	2 Max. number of part systems (main + sub)	△8	∆8	∆8	∆8	04	04	02	01	01	07
	1 Max. number of main part systems	O4 ∆8	O4 ∆8	O4 ∆8	O4 ∆8	02	02	02	01	01	07
	2 Max. number of sub part systems	04	04	04	04	02	02	01			02
		∆8	∆8	∆8	∆8	02	02	01	_		02
S C	control axes and operation modes										
1	Tape (RS-232C input) mode	0	0	0	0	0	0	0	0	0	
2	Memory mode MDI mode	0	0	0	0	0	0	0	0	0	0
_	High-speed program server mode										
	Control unit-side High-speed program server mode	Δ	Δ	_	_	0	_	_	_	_	_
						-					
	2 Display unit-side High-speed program server mode	Δ/—	Δ/—	Δ	Δ	0/—	0	0	0	0	_
L	3 FTP high-speed program server mode	_	_	_	_	_	_	_	_	_	Δ
5	Front-side SD card mode	0	0	0	0	0	0	0	0	0	-
6	Front-side USB memory mode	0	0	0	0	0	0	0	0	0	_
put	t command										
1 D	ata increment										
1	Least command increment										
	Least command increment 1µm	0	0	0	0	0	0	0	0	0	0
İ	Least command increment 0.1µm	0	0	0	0	0	0	0	0	0	0
	Least command increment 0.01µm (10nm)	Δ	Δ	Δ	Δ	_					
L	Least command increment 0.001µm (1nm)	Δ	Δ	Δ	Δ	_		_	_		
2											_
	Least control increment 0.01µm (10nm)	0	0	0	0	0	0	0	0	0	0
	Least control increment 0.001µm (1nm)	0	0	0	0	0	0	0	0	0	0
	Indexing increment	0	0	0	0	0	0	0	0	0	0
2 U	nit system										
1	Inch / Metric changeover	0	0	0	0	0	0	0	0	0	0
	North annual in successful										
2	2 Input command increment tenfold	_	_	_	_	_	_	_	_	_	_
	rogram format							ı			
1	Program format 1 Format 1 for Lathe (G Code List 2, 3)	0	0	0	0	0	0	0	0	0	0
	2 Format 1 for Latile (G Code List 2, 3)	0	0	0	0	0	0	0	0	0	0
	3 Special format for lathe (G Code List 6, 7)	0	0	0	0	0	0	0	0	0	0
	4 Format 1 for Machining center								_	_	_
	5 Format 2 for Machining center (M2 format)			_				_		_	_
L	6 MITSUBISHI CNC special format	0	0	0	0	0	0	0	0	0	0
2	Program format switch	Δ	Δ	Δ	Δ		_			_	_
10	command value										
7		_	0	0	0	0	0	0	0	0	0
	Decimal point input I, II	0									

			Mad	chining c	enter sys	tem				
M80	oow	M8	00S	M80W		80	Е	80	C80	Conoral evaluation
M850W	M830W	M850S	M830S	_	M80	M80	E80	E80	_	General explanation
11100011	WOODT	1410000	1410000		TypeA	TypeB	TypeA	TypeB		
_			_			_				
03	03	03	03	03	03	03	03	03	03	The NC axis, spindle, and PLC axis are generically called the control axis.
016	016	016	016	11	11	9	6	4	16	The NC axis can be manually or automatically operated using a machining program.
∆32	△32	△32	△32				F+1		40	The PLC axis can be controlled using a sequence program. The number of axes that is within the max. number of control axes, and that does
016	016	016	016	8	8	6	5*1	3	16	not exceed the max. number given for the NC axis, spindle and PLC axis, can be used.
4 8	8	8	8	2 6	6	6	1 2	0	7	*1 Rotary axis up to 1 axis *2 G/B: Guide Bush
8	8	8	8	4	4	4	1	0	8	The number of PLC axes available to be used as indexing axis.
8	4	8	4	4	4	4	4	3	4	Number of axes with which simultaneous interpolation control is possible.
08	08	08	08	8	8	5	5*	3	8	Max. number of NC axes possible to control in the same part system.
Δ12 Ο	Δ12 O	Δ12 O	Δ12 O	0	0	0			0	* Rotary axis up to 1 axis The axis name (command axis name) to issue the absolute/incremental command
		0		U			_		0	to NC control axis can be expanded to two letters.
1	1	1	1	1	1	1	1	1	1	One part system is the standard.
02	02	02	02	02	02	01	01	01	07	
										[M800/M80/E80] Up to eight part systems for a lathe system, and up to two part systems for a
02	02	02	02	02	02	01	01	01	07	machining center system. [C80]
02	02	02	02	_	_			_	_	Up to seven part systems.
0	0	0	0	0	0	0	0	0	_	In this mode, operation is performed using the machining program data from the
0	0	0	0	0	0	0	0	0	0	RS-232C interface built in the CNC unit. Machining programs stored in the memory of the CNC module are run.
0	0	0	0	0	0	0	0	0	0	MDI data stored in the memory of the CNC unit are executed.
Δ	Δ	_	_	0	_	-	_	_	_	The machining program stored in SD card can be operated by installing a SD card in the control unit SD card interface.
										The machining program stored in the built-in disk of the display unit can be operated.
Δ/—	Δ/—	Δ	Δ	0/—	0	0	0	0	_	The built-in disk of the display unit is mounted in the personal computer for
				0,-						M800W/M80W (Windows-based display unit). For M800S/M80/E80, the SD card inserted into SD card I/F on the back of the display unit is equivalent to the built-in
										disk of the display unit. This function allows high-speed transfer of machining programs from the FTP
_	_	_	_	_	_	_	_	_	Δ	server to the large-capacity buffer memory in CNC CPU via Ethernet to execute
0	0	0	0	0	0	0	0	0		the program. The machining program stored in a SD card can be operated. This SD card is
										installed to the front-side SD card I/F. The machining program stored in a USB memory can be operated. This USB
0	0	0	0	0	0	0	0	0		memory is installed to the front-side USB memory VF.
										The data increment handled in the controller includes the input setting increment
										and command increment. Each type is set with parameters. Possible to command in increments of 0.001mm (linear axis) and 0.001° (rotary
0	0	0	0	0	0	0	0	0	0	axis).
0	0	0	0	0	0	0	0	_	0	Possible to command in increments of 0.0001mm (linear axis) and 0.0001° (rotary axis).
Δ	Δ	Δ	Δ	_	_	–	_	_	_	Possible to command in increments of 0.00001mm (linear axis) and 0.00001° (rotary axis).
Δ	Δ	Δ	Δ	_	_	_	_	_	_	Possible to command in increments of 0.000001mm (linear axis) and 0.000001° (rotary axis).
	l									The least control increment determines the CNC's internal operation accuracy.
0	0	0	0	0	0	0	0	0	0	Possible to control in increments of 0.00001mm (linear axis) and 0.00001° (rotary axis).
0	0	0	0	0	0	0	0	0	0	Possible to control in increments of 0.000001mm (linear axis) and 0.000001° (rotary
0	0	0	0	0	0	0	0	0	0	axis). This function limits the command value for the rotary axis.
<u> </u>				Ü						
0	0	0	0	0	0	0	0	0	0	The unit systems of the data handled in the controller include the metric system and inch system. The type can be designated with a parameter and a machining
0		0	0	0						program.
0	0	0	0	0	0	0	0	0	0	The program's command increment can be multiplied by an arbitrary scale with the parameter designation. This function is valid when a decimal point is not used for
										the command increment.
										G code (program) format
_	_	_	_	_	_	_	_	-	_	
_			_	_	_		_	_		G code list for the lathe system. The G code list is selected by parameter.
0	0	0	0	0	0	0	0	0	0	Contract to the contract of th
0	0	0	0	0	0	0	_		0	G code list for the machining center system. The G-code list is selected by parameter.
										The formats of the fixed cycle for turning machining (G77 to G79), compound type
	_				_			_	_	fixed cycle for turning machining (G71 to G76) and fixed cycle for drilling (G80 to G89) can be switched to the MITSUBISHI CNC special formats.
										This function is designed to switch the program format (G code list) using G codes or PLC signal. When you run a lathe-based multi-tasking machine, and if you
_	_	_	_	_	_	-	-	-	_	change to the G code list of machining center system, you can use a free-curved surface machining program made with CAM without modifying the program.
										Survivor makining program make with CANY without modifying the program.
										For the decimal point input type 1, the unit of the last digit of a command without
			0	0	0	0	0	0	0	a decimal point is the same as that of the least command increment. For decimal point input type 2, the last digit of a command without a decimal point is interpreted to the command without a decimal point is interpreted to the command without a decimal point is interpreted to the command without a decimal point is the same as that of the least command increment.
0	0	0	~	~						
0	0	0				<u></u>			<u></u>	in millimeters during the metric mode, in inches in the inch mode, or in seconds for a time-based command.
0	0	0								a time-based command. When axis coordinate data are issued in a machining program command, either
0	0	0	0	0	0	0	0	0	0	a time-based command.

SYSTEM

Override cancel

Machining center system										
1400	101A/	140						90	000	
M850W	M830W	M850S	M830S		M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB		General explanation
_	_	_	_	_	_	-	-	-	_	The designation method of an axis command value can be changed over with parameters between the radius designation or diameter designation. When the diameter designation is selected, the scale of the length of the selected axis is
0	0	0	0	_		_		_		doubled. (moves only half (1/2) the commanded amount) Diameter/Radius designation switch function enables you to switch the diameter/ radius designation of each axis using a G code at your desired timing.
0	0	0	0	0	0	0	0	0	0	This function carries out positioning at high speed using a rapid traverse rate with
Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	the travel command value given in the program. The G code command always moves the tool to the final position in the direction
Δ					0				Δ	determined by parameters.
0	0	0	0	0	0	0	0	0	0	Linear interpolation is a function that moves a tool linearly by the travel command value supplied in the program at the cutting feedrate designated by the F code.
0	0	0	0	0	0	0	0	0	0	This function moves a tool along a circular arc on the plane selected by the trave command value supplied in the program.
0	0	0	0	0	0	0	0	0	0	With this function, any two of three axes intersecting orthogonally are made to perform circular interpolation while the third axis performs linear interpolation in synchronization with the arc rotation. This control can be exercised to machine
Δ	Δ	Δ	Δ	0	0	_	_	_	Δ	large-diameter screws or 3-dimensional cams. This function interpolates arcs where the start point and end point are not on the
Δ	Δ	Δ	Δ	0	0	0	_	_	Δ	circumference of the same circle into spiral shapes. This function transfers the shape that is on the cylinder's side surface (shape yielded by the cylindrical coordinate system) onto a plane, and when the transfer shape is designated in the program in the form of plane coordinates, the shape is converted into a movement along the linear and rotary axes of the original cylind
										coordinates, and the contours are controlled by means of the CNC unit during machining. This function converts the commands programmed by the orthogonal coordinat axes into linear axis movements (tool movements) and rotary axis movements
Δ	Δ	Δ	Δ	_	_	_	_	_	Δ	(workpiece rotation) to control the contours. It is useful for outting linear cutouts the outside diameter of the workpiece, grinding cam shafts, etc. When a lathe with linear axes (X, Z axes) and rotary axis (C axis) serving as the
_	_	_	_	_	_	_	_	_	_	control axes is to perform milling at a workpiece and face or in the longitudinal direction of the workpiece, his function uses the hypothetical axis Y, which is at right angles to both the X and Z axes, to enable the milling shape to be programmed as the X, Y and Z orthogonal coordinate system commands. This function sets one of the axes of the helical interpolation or spiral interpolation.
Δ	Δ	Δ	Δ	_	_	_	_	_	_	This burdon's set or the abea or the head in the head in the polation of spiral interpolation in comment, including a linear axis, as a hypothetical axis (axis with no actual movement), and performs pulse distribution. This enables SIN or COS interpolation, which corresponds to the side view (view from the hypothetical axis) of the helical interpolation or spiral interpolation.
Δ	Δ	Δ	Δ	0	0	_	_	_	_	Tools can be moved along the involute curve. This function can also move a too helically (spirally) while moving the tool along the involute curve. This can be used for scroll machining of involute gears or compressors, and smooth accurate machining can be performed without stepping of path from the command by fin segment or without acceleration/deceleration by segment length.
Δ	Δ	Δ	Δ	_	_	_	_	_		With this function, the rotary axis movement is changed into exponential function vis-a-vis the linear axis movements.
Δ	Δ	Δ	Δ	0	0	_	_	_	Δ	This function automatically generates spline curves that smoothly pass through rows of dots designated by a fine-segment machining program, and performs interpolation for the paths along the curves. This enables high-speed and high- accuracy machining.
Δ	Δ	Δ	Δ	_	_	_	_	_	_	This function realizes NURBS curve machining by commanding NURBS curve parameters (number of stages, weight, knot, control point). The path does not need to be replaced with fine segments.
Δ	Δ	Δ	Δ	0	0	_	_	_	_	An arc shape determined by three points (start point, intermediate point, end podesignated in the three-dimensional space can be machined.
Δ	Δ	Δ	Δ	0	0	_	_	_	Δ	This function automatically generates curves that smoothly pass in the tolerance error range, and moves on the paths along the curves. This enables smooth machining.
1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	The rapid traverse rate can be set independently for each axis using parameters
1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	This function specifies the feedrate of the cutting commands, and gives a command for a feed amount per spindle rotation or feed amount per minute.
1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	The manual feedrates are designated as the feedrate in jog mode or incrementa feed mode for manual operation and the feedrate during dry run ON for automa operation. The manual feedrates are set using external signals.
0	0	0	0	0	0	0	0	0	0	This function multiplies the rotary axis' command speed by ten during initial inch
0	0	0	0	0	0	0	0	0	0	By issuing a G command, the command from the block is issued directly with a numerical value following F as the feedrate per minute (mm / min or inch / min).
Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	By issuing a G command, the command from the block is issued directly with a numerical value following F as the feedrate per spindle revolution (mm / rev or in / rev).
Δ	Δ	Δ	Δ	0	0	_	_	_	Δ	This function can issue one block of machining time (inverse) commands in F commands, in place of normal feed commands. This enables the machining speed on the cutting surface to be constantly controlled and prevents the loss of accuracy, even if radius compensation is applied to the machining program that expresses the free curve surface with fine segment lines.
0	0	0	0	0	0	0	0	0	0	The feedrate registered by parameter in advance can be assigned by designatir single digit, following address F.
Δ	Δ	Δ	Δ	0	0	0	0	_	Δ	By enabling a manual speed command and selecting either handle feed or jog (manual) feed in the memory or MDI mode, automatic operation can be carried at this feedrate.
Δ	Δ	Δ	Δ	0	0	_	_	_	Δ	Feedrates can be specified for G00 (positioning command). The speed of tool exchange, axis movement of gantry, etc. can be specified with the machining program so that the mechanical vibration can be suppressed. This function enables designation of the feedrate of a specific axis (with the
Δ	Δ	Δ	Δ	_	_	<u> </u>	_		_	Instruction enables designation of the feedrate of a specific axis (with the command F).
0	0	0	0	0	0	0	0	0	0	Override can be applied to manual or automatic rapid traverse using the externa
	0	0	0	0	0	0	0	0	0	input signal. Override can be applied to the feedrate command designated in the machining
O I		. ~	. ~	. ~	. ~	. ~	. ~	ı ~	ı ~	program using the external input signal.
0	0	0	0	0	0	0	0	0	0	Override can be further applied as a second-stage override to the feedrate after cutting feed override has been applied.

[N/1200//	MON/EDDICA	Myor E2	[CRUIS VV VC	r D

		MARK	00W	M800S		Lathe system M80W M		80	F	80	C80
	class	M850W		M850S	M830S	IVIOUVV	M80	M80	E80	E80	
Δα	celeration / Deceleration	WIGGOVV	WIGGOVY	1410505	1410000		TypeA	TypeB	TypeA	ТуреВ	
	Sociation / Besseriation										
1	Automatic acceleration / deceleration after interpolation	0	0	0	0	0	0	0	0	0	0
2	Rapid traverse constant-gradient acceleration / deceleration	0	0	0	0	0	0	0	0	0	0
3	Rapid traverse constant-gradient multi-step acceleration / deceleration	_	_	_	_	_	_	_	_	_	_
Thr	ead cutting		l								
1	Thread cutting (Lead / Thread number designation)	0	0	0	0	0	0	0	0	0	0
2	Variable lead thread cutting	0	0	0	0	0	0	0	0	0	0
3	Synchronous tapping										
	1 Synchronous tapping cycle	0	0	0	0	0	0	0	0	0	0
-	2 Pecking tapping cycle	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
	3 Deep-hole tapping cycle	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
	4 Multiple spindle synchronous tapping	_	_	_	_	_	_	_	_	_	Δ
	5 Synchronous tapping with analog I/F spindle	0	0	0	0	0	0	0	0	0	_
\vdash	Chamfering	0	0	0	0	0	0	0	0	0	0
\vdash	Circular thread cutting	Δ	Δ	Δ	Δ	0	0	_	_	_	_
П	High-speed synchronous tapping (OMR-DD)	0	0	0	0	0	0	0	_	_	0
10	Thread recutting	Δ	Δ	Δ	Δ	0	0	_	_	_	Δ
11	Thread cutting override	Δ	Δ	Δ	Δ	0	0	_	_	_	Δ
12	Variable feed thread cutting	Δ	Δ	Δ	Δ	0	0	_	_	_	Δ
13	Thread cutting time constant switch	0	0	0	0	0	0	0	0	0	_
ш	nual feed		l								
1	Manual rapid traverse	0	0	0	0	0	0	0	0	0	0
2	Jog feed	0	0	0	0	0	0	0	0	0	0
3	Incremental feed	0	0	0	0	0	0	0	0	0	0
4	Handle feed	0	0	0	0	0	0	0	0	0	0
5	Manual feedrate B	0	0	0	0	0	0	0	0	0	0
6	Manual feedrate B surface speed control	_	_	_	_	_	_	_	_	_	_
8	Manual speed clamp	0	0	0	0	0	0	0	0	0	0
Dw			I					I			
+	Dwell (Time-based designation)	0	0	0	0	0	0	0	0	0	0
ш	Dwell (Revolution-based designation)	0	0	0	0	0	0	0	0	0	0
	am memory / editing mory capacity										
	Memory capacity (number of programs stored)										
	230kB [600m] (400 programs)	_	_	_	_	_	_	_	0	0	_
	500kB [1280m] (1000 programs) 1000kB [2560m] (1000 programs)	Ο	Ο Δ	Ο Δ	Ο Δ	0	0	0	_	_	Ο Δ*
	2000kB [5120m] (1000 programs)	Δ	Δ	Δ	Δ	_			_		Δ*
Edit		0		0		0			0		^
	Program editing Background editing	0	0	0	0	0	0	0	0	0	0
H	Sacrage Control Continues		\vdash				 	\vdash			\vdash
3	Buffer correction	0	0	0	0	0	0	0	0	0	0
5	Multi-part system simultaneous program editing	0	0	0	0	0	0	0	_	_	0
6	Special program editing display for synchronization between part systems	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ

BACK	0014	140		hining c	enter sys			80	C00	-
M850W	M830W	M850S	00S M830S	WIOUW	M80	M80	E80	E80	C80 —	General explanation
1100011	Wiccott	1110000	1410000		TypeA	TypeB	TypeA	TypeB		
0	0	0	0	0	0	0	0	0	0	Acceleration / deceleration is automatically applied to all commands. The acceleration / deceleration patterns can be selected using a parameter from the following types: linear acceleration/deceleration, soft acceleration / deceleration, exponent function acceleration / deceleration and exponent function acceleration linear deceleration.
0	0	0	0	0	0	0	0	0	0	This function performs acceleration / deceleration at a constant-gradient during linear acceleration / deceleration by the rapid traverse command or the linear interpolation command. Compared to the method of acceleration / deceleration after interpolation, the constant-gradient acceleration / deceleration method enables improved cycle time.
Δ	Δ	Δ	Δ	0	0	0	_	_	Δ	This function carries out the acceleration / deceleration according to the torque characteristic of the motor in the rapid traverse mode during automatic operation (This function is not available in manual operation.) The rapid traverse constant-gradient multi-step acceleration / deceleration method makes for improved cycle time because the positioning time is shortened by using the motor ability to the maximum.
^		^		0	0	0	0	0	Δ	Thread cutting with a designated lead can be performed. Inch threads are cut b
_	Δ —		Δ —	_	_	_	_	_	_	designating the number of threads per inch with the E address. By commanding the lead increment/decrement amount per thread rotation, variable lead thread cutting can be performed. * With didital I/F spindle
0	0	0	0	0	0	0	0	0	0	This function performs tapping through synchronized control of the spindle and servo axis. This eliminates the need for floating taps and enables tapping to be
										conducted at a highly accurate tapping depth. The load applied to the tool can be reduced by designating the depth of cut per
Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	pass and cutting the workpiece to the hole bottom with a multiple number of passes.
Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	In the deep-hole tapping, the load applied to the tool can be reduced by designating the depth of cut per pass and cutting the workpiece to the hole bott with a multiple number of passes.
_	_	_	_	_	_	_	_	_	Δ	This function enables two or more spindles to perform synchronous tapping at a time, thereby improving the tapping efficiency.
0	0	0	0	0	0	0	0	0	_	This function performs tapping using the analog-connected spindle. A dedicated inverter with position controller is required.
_	_	_	_	_	_	_	_	_	_	Chamfering can be enabled during the thread cutting cycle by using external signals.
_	_	_	_	_	_	_	_	_	_	Circular thread in which the lead is in longitudinal direction can be cut.
0	0	0	0	0	0	0	_	_	0	The servo axis directly detects and compensates the spindle's delay in tracking using the communication between drive units over the high-speed optical servo network. By minimizing the synchronization error, the accuracy of the synchronic tapping is increased.
_	_	_	-	_	_	_	_	_	_	The function stores a thread groove position and compensates a start position spindle thread cutting automatically so that the tool can pass along the memori position of the thread groove at the thread cutting execution.
_	_	_	_	_	_	_	_	_	_	The thread cutting feedrate can be changed by changing the spindle override depending on rough cutting, finish machining, etc.
0	0	0	0	0	0	0	0	0		This function changes the cutting feedrate by the spindle override at the time of thread cutting. The machining condition during thread cutting can be changed. "Thread cutting time constant" can be applied to the acceleration/deceleration to constant of the NC control axis during the tread cutting.
										The tool can be moved at the rapid traverse rate for each axis separately. Overri
0	0	0	0	0	0	0	0	0	0	can also be applied to the rapid traverse rate by means of the rapid traverse override function. The tool can be moved in the axis direction (+ or .) in which the machine is to be
0	0	0	0	0	0	0	0	0	0	moved at the per-minute feedrate. The tool can be moved for the designated amount (incremental amount) in the a
0	0	0	0	0	0	0	0	0	0	direction each time the jog switch is pressed. The machine can be moved in very small amounts by rotating the manual pulse
0	0	0	0	0	0	0	0	0	0	generator.
0	0	0	0	0	0	0	0	0	0	Manual feedrate B is a function that sets an arbitrary axis feedrate from the user PLC separately from the manual feedrate. When machining with the manual feedrate B function by moving the orthogonal
Δ	Δ	Δ	Δ	_	_	_	_	_	_	axis while rotating the rotary table, the table rotation speed is controlled according to the distance from the rotation center.
0	0	0	0	0	0	0	0	0	0	The maximum speed for manual feed can be switched to the rapid traverse rate the manual feed clamp speed.
0	0	0	0	0	0	0	0	0	0	The G code command temporarily stops machine movements and sets the machine in the stand-by status for the time designated in the program.
_	_	_	_	_	_	_	_	_	_	When G04 is commanded in the synchronous feed mode (G95), the machine w for the spindle to rotate for the number of the revolutions designated.
_						_				
										Machining programs are stored in the NC memory, data server or external mem
0	0	0	0	0	0	0	0	0	0	devices (front SD card, built-in disk of display unit, etc.). (Note) For a multi-part system, the specifications shown here in
Δ	Δ	Δ	Δ	_	_	_	_	_	Δ*	the total for all part systems. * Up to 2000 programs for C80
Δ	Δ	Δ	Δ	_	_		_		Δ*	
0	0	0	0	0	0	0	0	0	0	This function enables program editing such as correction, deletion and addition.
0	0	0	0	0	0	0	0	0	0	This function enables one machining program to be created or edited while anot program is running.
0	0	0	0	0	0	0	0	0	0	During automatic operation (including memory, tape, SD card or Data Server (DV operation) or MID operation, this function initiates single block stop and enables next command to be corrected or changed. When a program error has occurre the function enables the block in which the error occurred to be corrected and operation to be resumed without having to perform NC resetting.
0	0	0	0	_	_	_	_	_	_	When an operation to open a machining program in the NC memory is perform on the edit screen, machining programs are opened in the right and left areas at the same time; the specified machining program of the displayed part system in the edit area being selected and the machining program of another part system with the same name in the unselected edit area.
Δ	Δ	Δ	Δ	0	0	_	_	_	_	When the left and right edit areas are displaying the same named programs of different part systems stored on the NC memory, the display is switched to the synchronized display of the left- and right- side programs aligned using the timir synchronization symbols.
Δ	Δ	Δ	Δ	0	0	0	_	_	_	This function shows the machining shape according to the command at the tin the machining program is input. The machining shape can be confirmed easily

						Lathe s	system				
	class	M80	oow	M8	00S	M80W		80		80	C80
	Ciass	M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_
	ration and display										
	tructure of operation / display panel								_		
	1 3 (31)	_	_		_	_			0	0	
3		_	_			_			_		_
2	1 1 1 1									-	
5	1 31 1 31 7			_	_		_	_	_	_	_
6				_	_		_	_	_	_	_
7	Separated-type color touchscreen display (15-type LCD TFT / Windows8)			_	_		_	_	_	_	_
8	Sonarated type color to Johannan display			_	_		_	_	_	_	_
9	Sonarated type color to Johannan dieplay			_	_		_	_	_	_	_
1	1 2	_	_		_	_		_	_	_	0
2 C	peration methods and functions										
1	Operation input	0	0	0	0	0	0	0	0	0	0
2	Absolute/Incremental setting	0	0	0	0	0	0	0	0	0	0
3	Multiple display connection	_	_	_	_	_	_	_	_	_	O(GOT)
4	Common display to multiple NCs	_	_	_	_	_	_	_	_	_	O(GOT)
5	Displayed part system switch	0	0	0	0	0	0	0	_	_	0
6	Menu list	0	0	0	0	0	0	0	0	0	0
1 7		0	0	0	0	0	0	0	0	0	0
1 8		0	0	0	0	0	0	_	_		0
9		0	0	0	0	0	0	0	0	0	O(GOT)
1	Parameter guidance	0	0	0	0	0	0	0	0	0	0
1	1 Alarm guidance	0	0	0	0	0	0	0	0	0	0
1		Δ	Δ	Δ	Δ	_	_	_	_	_	_
1	0.0	-/0	-/0	0	0	-/ O	0	0	0	0	O(GOT)
1	User selectable menu configuration	0	0	0	0	0	0	0	0	0	0
1	PC-NC network automatic connection	0/—	0/—	_	_	0/—	_	_	_	_	_
1	7 Device open parameter	0	0	0	0	0	0	0	0	0	_
1	3 SRAM open parameter	0	0	0	0	0	0	0	0	0	_
1	9 MTB selectable menu configuration	0	0	0	0	0	0	0	0	0	0
2	Remote desktop connection	-/0	-/0	Δ	Δ	- /O	0	0	_	_	_
2		<i>—</i> /∆	<i>—</i> /∆	Δ	Δ	— /O	0	0	_		_
	isplay methods and contents	_	T -	_	_	_	_		_	T -	_
	<u> </u>	0	0	0	0	0	0	0	0	0	0
2		0	0	0	0	0	0	0	0	0	0
3		0	0	0	0	0	0	0	0	0	0
_		0	0	0	0	0	0	0	0	0	0
5	Edit screen display	0	0	0	0	0	0	0	0	0	0
6	Diagnosis screen display	0	0	0	0	0	0	0	0	0	0
7	Maintenance screen display	0	0	0	0	0	0	0	0	0	0
8	Home application	0/—	0/—	-	-	0/—	-	_	_	_	_
9	Home screen	0	0	0	0	0	0	0	0	0	_

					enter sys					
M80	00W	M8	00S	M80W		80		B0 500	C80	General explanation
M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_	·
					Турол	Typob	Турол	.ypob		
							0	0		
			_				_	_		-
_	_			_			_	_	_	-
_	_	_	_		_	_	_	_	_	
		_	_		_	_	_	_	_	The setting and display unit consists of the display unit and the keyboard unit. Refer to ""HARDWARE"" described later for the details.
		_								(Note) Only software keyboard is available and there is no hardware keyboard for the separated-type color touchscreen display (19-type LCD TFT/Windows8 or 19-
		_	_		_	_	_	_	_	type horizontal LCD TFT/Windows8).
		_	_		_	_	_	_	_	
		_	_		_	_	_	_	_	
					_				0	Select a GOT in its lineup. For details, refer to catalogs: "GOT2000 series".
										In addition to the method of directly inputting numeric data, a method to input the
0	0	0	0	0	0	0	0	0	0	operation results using four basic arithmetic operators and function symbols can be used for specific data settings.
0	0	0	0	0	0	0	0	0	0	When setting the data, the absolute/incremental setting can be selected from the menu.
_	_	_	_	_	_	_	_	_	O(GOT)	Using an Ethernet hub, one CNC module can be connected to and switched between up to eight displays. (Note that the max. number of connectable displays is limited depending on the machine operation panel specifications.)
_	_	_	_	_	_	_	_	_	O(GOT)	Using an Ethernet hub, one display can be connected to and switched between up to 64 CNC modules. (Note that the max. number of connectable displays is limited
0	0	0	0	0	0	_	_	_	0	depending on the machine operation panel specifications.) The part system displayed on the screen can be changed.
0	0	0	0	0	0	0	0	0	0	The menu list function displays the menu configuration of each screen as a list,
0	0	0	0	0	0	0	0	0	0	making it possible to directly select the menu for other screens. The screen display changes when the screen mode selection switch is changed.
0	0	0	0	0	0		_		0	The screen display changes with the signal from PLC.
0	0	0	0	0	0	0	0	0	O(GOT)	The screen saver function protects the display unit by turning the backlight OFF after the length of time specified in a parameter.
0	0	0	0	0	0	0	0	0	0	This function displays the details of the parameters or the operation methods according to the state of the screen currently displayed.
0	0	0	0	0	0	0	0	0	0	Guidance is displayed for the alarm currently susued.
Δ	Δ	Δ	Δ	_	_	_	_	_	_	If an illegal input is found in the decimal point after the current cursor position, the cursor will move to that position, and a warning message will appear.
-/0	-/0	0	0	-/0	0	0	0	0	O(GOT)	This function allows to output a bitmap file of a screen displayed on the setting and display unit to USB memory or SD card.
0	0	0	0	0	0	0	0	0	0	This function allows to change the display order of the main menu in the "Monitor", "Setup" and "Edit" screens, and to change display / non-display selection.
0/—	0/—	_	_	0/—	_	_	_	_	_	This function supports to restore the connection when the network connection fails between the display unit and the control unit.
0	0	0	0	0	0	0	0	0	_	This function can set or change the user backed up area of the PLC device from the NC screen.
0	0	0	0	0	0	0	0	0	_	This function can set or change the SRAM open area for machine tool builders
			0							from the NC screen. Menu items on the "Monitor", "Setup" and "Edit" screens (of MITSUBISHI standard
0	0	0	0	0	0	0	0	0	0	format) can be moved within a screen or hidden as desired. The custom screen menu items added by machine tool builders, on the contrary, cannot be moved or hidden.
-/0	-/0	Δ	Δ	-/0	0	0	_	_	_	This enables the operation of the external personal computer on the screen of NC with UltraVNC Server embedded.
- /△	- /∆	Δ	Δ	-/0	0	0	_	_	_	This function enables status confirmation and remote operation by displaying the
.—	,=	_	_		_			<u> </u>		NC screen display on the external computer/tablet type computer.
0	0	0	0	0	0	0	0	0	0	The status of the program currently being executed is indicated.
0	0	0	0	0	0	0	0	0	0	The clock is built in, and the date (year, month, date) and time (hour, minute, second) are displayed.
0	0	0	0	0	0	0	0	0	0	Various information related to operation, such as the axis counter, speed display and MSTB command are displayed.
0	0	0	0	0	0	0	0	0	0	Tool/workpiece related settings, user parameter settings, MDI editing, counter setting, manual numeric command issuing and pallet program registration (option) can be carried out.
0	0	0	0	0	0	0	0	0	0	Machining program editing (addition, deletion, change) and checking, simple program creation, and machining program input / output can be carried out.
										program creation, and machining program input/ output can be carried out. The following operations related to the CNC diagnosis can be carried out. (1) Display the hardware and software configuration. (2) Display the CNC options.
0	0	0	0	0	0	0	0	0	0	(2) Diagnose the PLC interface. (4) Display the drive unit information. (5) Display the alarm message / alarm history list etc.
0	0	0	0	0	0	0	0	0	0	Parameter setting and display, and NC data input/output, etc., can be carried out.
0/—	0/—	_	_	0/—	_	_	_	_	_	19-type vertical display unit has the expansion applications that display the machine status, software keyboard, etc. in the lower half of the screen in no linkage with the upper half.
0	0	0	0	0	0	0	0	0	_	Home screen is able to display the machine status (including spindle loads and positions of linear and rotary axes) which can be monitored by an operator. Also, each application can be called by pressing the application button on the home screen.

 $\hbox{OStandard} \ \ \triangle \hbox{Optional} \ \ \square \hbox{Selection} \ \ \hbox{Specifications of separated-type display are classified with "Windows-based" and non-Windows-based}$

							Lathe s	evetem				
		class	M8	00W	M8	00S	M80W		80		80	C80
		Class	M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_
10	_	Additional languages										
	2		0	0	0	0	0	0	0	0	0	0
	3	-	0	0	0	0	0	0	0	0	0	0
	4		0	0	0	0	0	0	0	0	0	0
	5		0	0	0	0	0	0	0	0	0	0
	6	Spanish	0	0	0	0	0	0	0	0	0	0
	7											
		1 Traditional Chinese characters	0	0	0	0	0	0	0	0	0	0
		2 Simplified Chinese characters	0	0	0	0	0	0	0	0	0	0
	\vdash	Korean	0	0	0	0	0	0	0	0	0	0
		Portuguese Hungarian	0	0	0	0	0	0	0	0	0	0
	11		0	0	0	0	0	0	0	0	0	0
	_	2 Swedish	0	0	0	0	0	0	0	0	0	0
	13		0	0	0	0	0	0	0	0	0	0
	14	Polish	0	0	0	0	0	0	0	0	0	0
	15	Russian	0	0	0	0	0	0	0	0	0	0
	16	Czech	0	0	0	0	0	0	0	0	0	0
Ш	17		0	0	0	0	0	0	0	0	0	
		Output functions and devices / Output data										
1	_	Machining program input / output	0	0	0	0	0	0	0	0	0	0
2	2 T	ool offset data input / output	0	0	0	0	0	0	0	0	0	0
3	3 (Common variable input / output	0	0	0	0	0	0	0	0	0	0
4		Parameter input / output	0	0	0	0	0	0	0	0	0	0
		listory data output	0	0	0	0	0	0	0	0	0	0
7	_	System configuration data output	0	0	0	0	0	0	0	0	0	0
2 In		/ Output I/F		_								
1	F	RS-232C I/F	0	0	0	0	0	0	0	0	0	–
2	2 8	6D card I/F										
	1	Control unit-side SD card I/F [up to 32GB]	0	0	_	_	0	_	_	_	_	_
	2	Front-side SD card I/F [up to 32GB]	0/—	0/—	0	0	0/—	0	0	0	0	_
	_	thernet I/F	0	0	0	0	0	0	0	0	0	O(GOT)
4		Display unit-side data server I/F	0	0	0	0	0	0	0	0	0	
		ront-side USB memory I/F [up to 32GB]	0	0	0	0	0	0	0	0	0	_
6	_	JSB I/F (GOT front-side USB I/F)	_	_	_		_			_	_	0
7	_	SD VF (GOT back-side SD card VF)	_	<u> </u>						_	<u> </u>	0
1	$\overline{}$	puter link Computer link B	Δ	Δ	Δ	Δ	0	0	0	_		_
4 0	the	rs										
1	Н	landy terminal connection	0	0	0	0	0	0	0	_	_	_
3		P filter setting	0	0	0	0	0	0	0	0	0	_
		Tool and Miscellaneous functions										
1 S	pino	dle functions (S)										
1	S	Spindle control functions										
	1	Spindle digital I/F	0	0	0	0	0	0	0	0	0	0
	2	Spindle analog I/F	0	0	0	0	0	0	0	0	0	∆ (MELSEC)
	3	Coil switch	0	0	0	0	0	0	0	0	0	0
	4	Automatic coil switch	0	0	0	0	0	0	0	0	0	0
	5	Encoder input I/F			0	0		0	0	0	0	_
	6	Spindle-mode servo motor control	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
	7	Spindle-mode rotary axis control	_	_	_	_	_	_	_	_	_	_
	8	Turret gear change control	Δ	Δ	Δ	Δ	0	0	0	0	_	_
	9	Spindle control with pulse train output	_	<u> </u>	_	_	_	0	0	0	0	_
2		6 code output	0	0	0	0	0	0	0	0	0	0
3	3 0	Constant surface speed control	0	0	0	0	0	0	0	0	0	0
4	1 8	Spindle override	0	0	0	0	0	0	0	0	0	0
	Ĺ	•	_	_				_	_			

Missow M											[INIOU/IVIOU/EQUIS/W Vel.F2 [COUJS/W Vel.B7
M830W M830W M830S M830S M800 M80	M80	oow	M8					E	80	C80	
O			M850S	M830S	_	M80	M80	E80	E80	_	General explanation
O						Турен	Турев	Турен	турев		
O											
O		_		_		_	_		_	_	
O O O O O O O O O O		_					_				
O	0	0	0	0	0	0	0	0	0	0	
O			0	0	0	0		0	0		-
O O O O O O O O O O										_	
O											Available display languages.
O											
O											
O		_	_			_	_	_			
O		_		_			_		_		
O											
O				_			_		_	_	
O										0	-
O			- U		0						
O			0		0						
O O O O O O O O O O										_	
O							_			_	Certain kinds of data handled by the NC system can be input and output between
O O O O O O O O O O O O O O O O O O O	0		0	0		0	0		0	_	
Provided in the product mount. Provided reproduct mount. Provided depends on the product mount. Provided depends on the pro										_	
O O O O O O O O O O O O O O O O O O O	0	0	O	0	O	0		0	_ 0	0	
O O O O O O O O O O O O O O O O O O O	0	0	0	0	0	0	0	0	0	_	
O O O O O O O O O O O O O O O O O O O											connector depends on the product model.
O O O O O O O O O O O O O O O O O O O	0	0	_	_	0	_	_	_	_	_	Interface card to use SD card can be attached inside the NC control unit.
O O O O O O O O O O O O O O O O O O O											
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □											
Interface card to use LDS memory can be attached riside the GOT. Interface card to use SD card can be attached riside the GOT. Interface card to use SD card can be attached riside the GOT.		-					_			 	
A A A A O O O O O O O O O O O O O O O O				_			_		_	0	1
the CNC. This function controls the serial communication (RS202C) of CNC and handy terminal. Handy terminal is a downstand machine operation pand which enables you to operate the machine including setup at hand.			_		_	_		_		0	Interface card to use SD card can be attached inside the GOT.
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	_		^	_	0	0					
O O O O O O O O O O O O O O O O O O O	Δ		Δ	Δ	0			_			the CNC.
you to operate the machine including setup at hand. This function prevents unauthroade access from external devices by filtering the IP address of the access source when the NC is being connected to Ethernet. The spindle rotation speed is determined in consideration of the override and gear ratio for the 5 command given in automatic operation or with manual numerical commands, and the spindle is rutated. The spindle rotation speed is determined in consideration of the override and gear ratio for the 5 command given in automatic operation or with manual numerical commands, and the spindle is rutated. This retiration is used to connect the digital spindle (AC spindle motor and spindle diffice unit). Spindle control can be executed using an analog spindle instead of the digital spindle. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle emotor connections. This is a spindle. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle emotor connections. This is a spindle unit command as a settinged from the PLG. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle emotor connections. This is accordance with the motor speed. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle emotor connections. This is accordance with the motor speed. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle emotor connections. This is accordance with the motor speed. Constant output characteristics can be achieved across a broad spectrum should be accordance with the motor speed. Constant output characteristics can be achieved across a broad spectrum should be accordance with the motor speed. Constant output characteristics can be achieved across a broad spectrum	0	0	0	0	0	0	0	_	_		
The spindle rotation speed is determined in consideration of the override and gaar ratio for the S command, and the spindle shotled. The spindle rotation speed is determined in consideration of the override and gaar ratio for the S command, and the spindle shotled. The spindle rotation speed is determined in consideration of the override and gaar ratio for the S command, and the spindle shotled. The spindle rotation speed is determined in consideration of the override and gaar ratio for the S commands, and the spindle shotled. The spindle rotation speed is determined in consideration of the override and gaar ratio for the S commands, and the spindle spindle (AC spindle motor and spindle of the digital spindle (AC spindle motor and spindle instead of the digital spindle.) MELSEC) Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which commands are assigned from the PLC. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is accordance with the motor speed. Constant output characteristics can be achieved across a broad spectrums of which the low-speed ranges by switching the spindle motor connections. This is accordance with the motor speed. Constant output characteristics can be achieved across a broad spectrum of which is accordance with the motor speed. With this function, achieving pulse can be input by parentered as a print of the spindle speed in the control of the subtraction of the spindle speed in the control of the subtraction of the spindle speed in the order of the spindle speed in the order of the rotation which is spindle speed in the spindle speed in the control input from the PLC. This function controls a spindle spindle speed in the control input from the PLC. This function controls applied speed in the spindle speed to be charged in accordance with charges in the radial											you to operate the machine including setup at hand.
ratio for the S command given in automatic operation or with manual numerical commands, and the spindle is notated. O O O O O O O O O O O O O O O O O O O	0	0	O	0	0	0	0	0	0	_	
ratio for the S command given in automatic operation or with manual numerical commands, and the spindle is notated. O O O O O O O O O O O O O O O O O O O											
Commands, and the spindle is rotated. Commands are associated using an analog spindle instead of the digital spindle. Comstant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which commands are assigned from the PLC. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which commands are assigned from the PLC. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which commands are assigned from the PLC. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which commands are assigned from the PLC. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which the CNC model across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which the CNC model and the spindle spindle spindle motor controls in the spindle spindle motor controls in the spindle spindl											
O O O O O O O O O O O O O O O O O O O											commands, and the spindle is rotated.
MELSEC) spindle. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which commands are assigned from the PLC. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which be commanded as a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which the CNC modules whiches the coils automatically in accordance with the motor speed. With this function, arbitrary pixe can be input by parameters set in R register.* Encoder expension card is required for MRDOW/MRDW/. A A A A O O O — — A This function controls a spindle using the combination of servo motor and servo drive unit MIDS-E series which controls in Series which control in the CNC modules with the MRDS-E decided which with the feedback speed of the rotary axis (spindle mode rotary axis of them by a servo motor to be control and thread outling, to be performed in synchronization with the feedback speed of the rotary axis (spindle mode rotary axis mode). This function enables are set to the spindle specification parameters according to the control input from the PLC. This function enables are set to the spindle specification parameters according to the control input from the PLC. When an 8-digit number following address S (spin Sug999999) is commanded, signed 32-bit binary data and start signal will be output to the PLC. With radial direction cutting, this function enables the spindle speed to be changed in accordance with changes in the radial direction control speed of a spindle or milling spindle on the rotation speed of a spindle or milling spindle on the policy of the machining program command during automatic operation or by assigned 90 the machining program command during automatic operation or by	0	0	0	0	0	0	0	0	0	0	
Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which commands are assigned from the PLC. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which commands are assigned from the PLC. Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a system under which the CNC module switches the cols automatically in accordance with the motor speed. With this function, arbitrary pulse can be input by parameters set in R register. * Encoder expansion cand is neguried for MB00W/MS0W. A A A O O O — — A difficult in the function and is supported for MB00W/MS0W. This function controls a spindle using the combination of servo motor and servo drive unit (MDS-E Series) which controls NC axis. This function enables a rotary axis driven by a servo motor to be controlled as a spindle. This enables lather-turning machining, including synchronous feed and thread cutting, to be performed in synchronization with the feedback speed of the rotary axis (spindle-motor entry axis mode). This function enables are to the spindle specification parameters according to the control input from the PLC. This function controls spindles by pulses output from the NC. When an 8-digit number following address S (S0 to Sug999999) is commanded, signed 22-bit binary data and start signal, or non-signed 32-bit binary data and start signal, or non-signed 32-bit binary data and start signal will be output to the PLC. With radial direction cordinates and the workplece on the control in accordance with the cutting point always kept at a constant speed (constant surface speed). This function applies override to the rotation speed of a spindle operation or by easily automatic operation or by a segment by the machining pr	0	0	0	0	0	0	0	0	0		
Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor cornections. This is a system under which the CNC module switches the coils automatically in accordance with the motor speed.	0	0	0	0	0	0	0	0	0		Constant output characteristics can be achieved across a broad spectrums down to the low-speed ranges by switching the spindle motor connections. This is a
Signary saystem under which the CNC module switches the coils automatically in accordance with the motor speed. With this function, arbitrary pulse can be input by parameters set in R register.* Encoder expansion card is required for MB00VM/MB0VV. A A A O O O — — A This function controls a spindle using the combination of servo motor and servo drive unit (MDS-E Series) which controls NO axis. This function controls a spindle using the combination of servo motor and servo drive unit (MDS-E Series) which controls NO axis. A A A O O — — — — This function enables a rotary axis driven by a servo motor to be controlled as a spindle. This enables laths-turning machining, including synchronous feed and thread cutting, to be performed in synchronization with the feedback speed of the rotary axis (spindle-mode rotary axis mode). This function enables are returned and thread cutting, to be performed in synchronization with the feedback speed of the rotary axis (spindle-mode rotary axis mode). This function enables are in the semi-closed system to select four types of gear ratios which are set to the spindle specification parameters according to the control input from the PLC. This function enables are in the semi-closed system to select four types of gear ratios which are set to the spindle specification parameters according to the control input from the PLC. This function controls spindles by pulses output from the NC. When an 8-digit number following address S (SO to Se.99999999) is commanded, signed 32-bit binary data and start signal, or non-signed 32-bit binary data and start signal, or non-signed 32-bit binary data and start signal will be output to the PLC. With radial direction cutting, this function enables the spindle speed to be changed in accordance with changes in the radial direction coordinates and the workpiece to be cut with the cutting point always kept at a constant syrade speed. This function applies override to the rotation speed of a spindle or miling spindle assigned by the machining prog											
acoordance with the motor speed. Comparison of the struction of the str	0	0	0	0	0	0	0	0	0	0	down to the low-speed ranges by switching the spindle motor connections. This
Encoder expansion card is required for M800W/M80W. A A A O O — — A This function controls a spindle using the combination of servo motor and servo drive unit (MDS-E Series) which controls NC axis. This function enables a rotary axis driven by a servo motor to be controlled as a spindle. This enables lathe-turning machining, including synchronous feed and thread cutting, to be performed in synchronization with the feedback speed of the rotary axis (spindle-mode rotary axis mode). — — — — — — — — — — This function enables are in the semi-closed system to select four types of gear ratios which are set to the spindle specification parameters according to the control input from the PLC. — — — — — — O O O — This function controls spindles by pulses output from the NC. When an 8-digit number following address S (S0 to Sa-99999999) is commanded, signed 32-bit binary data and start signal, or non-signed 32-bit binary data and start signal, or non-signed 32-bit binary data and start signal will be output to the PLC. With radial direction cutting, this function enables the spindle speed to be changed in accordance with changes in the radial direction coordinates and the workpiece to be cut with the cutting point always kept at a constant syrae (constant syrae). This function applies override to the rotation speed of a spindle or miling spindle assigned. This function applies override to the rotation speed of a spindle or miling spindle assigned by the machining program command during automatic operation or by											accordance with the motor speed.
A A A O O O — — A dine unit (MDS-E Series) which controls NC axis. A A A O O — — — A instruction enables a rotary axis driven by a servo motor to be controlled as a spindle. This enables lathe-turning machining, including synchronous feed and thread cutting, to be performed in synchronization with the feedback speed of the rotary axis (spindle-mode rotary axis model). A A A O O — — — — — — — — — — — — — — —			0	0		0	0	0	0	_	Encoder expansion card is required for M800W/M80W.
A A A O O O — — — — spindle. This enables lather-turning machining, including synchronous feed and thread cutting, to be performed in synchronization with the feedback speed of the rotary axis (spindle-mode rotary axis smode). — — — — — — — — — — — — — — — — — — —	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ	drive unit (MDS-E Series) which controls NC axis.
Insea cutting, to be performed in synchronization with the teachack speed of the rotary axis (spindle-mode rotary axis spindle).					0						
This function enables axes in the semi-closed system to select four types of gear ratios which are set to the spindle specification parameters according to the control input from the PLC. — — — — — O O O — This function controls spindles by pulses output from the NC. When an 8-digit number following address S (SD to \$1.999999999) is commanded, signed 32-bit binary data and start signal, or non-signed 32-bit binary data and start signal, or non-signed 32-bit binary data and start signal will be output to the PLC. With radial direction cutting, this function enables the spindle speed to be changed in accordance with changes in the radial direction coordinates and the workpiece to be cut with the cutting point always kept at a constant sprace (constant surface speed). This function applies override to the rotation speed of a spindle or milling spindle assigned by the machining program command during automatic operation or by		Δ	Δ		O		_	_	_	-	
input from the PLC. — — — O O O — This function control spindles by pulses output from the NC. When an 8-digit number following address S (S0 to Sa.99999999) is commanded, signed 32-bit binary data and start signal, or non-signed 32-bit binary data and start signal will be output to the PLC. With radial direction outling, this function enables the spindle speed to be changed in accordance with changes in the radial direction coordinates and the workpiece to be out with the outling point always kept at a constant surface speed). This function applies override to the rotation speed of a spindle or milling spindle assigned by the machining program command during automatic operation or by	_	_	_	_	_	_	_	_	_	_	This function enables axes in the semi-closed system to select four types of gear
When an 8-digit number following address S (S0 to \$2,999999999) is commanded, signed 32-bit binary data and start signal, or non-signed 32-bit binary data and start signal will be output to the PLC. With radial direction cutting, this function enables the spindle speed to be changed in accordance with changes in the radial direction coordinates and the workpiece to be cut with the cutting point always kept at a constant speed (constant surface speed). This function applies override to the rotation speed of a spindle or milling spindle assigned by the machining program command during automatic operation or by								_			input from the PLC.
O O O O O O O O O O O O O O O O O O O			_		_	0	0	U	0	 -	
With radial direction cutting, this function enables the spindle speed to be changed in accordance with changes in the radial direction coordinates and the workplece in accordance with changes in the radial direction coordinates and the workplece to be cut with the cutting point always kept at a constant surface speed). This function applies override to the rotation speed of a spindle or milling spindle assigned by the machining program command during automatic operation or by	0	0	0	0	0	0	0	0	0	0	signed 32-bit binary data and start signal, or non-signed 32-bit binary data and
to be cut with the cutting point always kept at a constant speed (constant surface speed). This function applies override to the rotation speed of a spindle or milling spindle assigned by the machining program command during automatic operation or by											With radial direction cutting, this function enables the spindle speed to be changed
This function applies override to the rotation speed of a spindle or milling spindle assigned by the machining program command during automatic operation or by	0	0	0	0	0	0	0	0	0	0	to be cut with the cutting point always kept at a constant speed (constant surface
			-		-						This function applies override to the rotation speed of a spindle or milling spindle
			U		U						

							Lotho	system				
		class	M8	00W	M8	00S	M80W		80	Е	80	C80
		CidSS	M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_
Τ	5	Multiple-spindle control						Туред	Турев	Туред	Турев	
		1 Multiple-spindle control I	0	0	0	0	0	0	0	0	0	0
	i	2 Multiple-spindle control II	0	0	0	0	0	0	0	0	0	0
	6		0	0	0	0	0	0	0	0	0	0
	7											
		1 Spindle position control (Spindle / C axis control)	0	0	0	0	0	0	0	0	0	0
		2 C axis control during Spindle synchronization	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ
	8	Spindle synchronization 1 Spindle synchronization I	0	0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0		0	0	
									0	0		0
		3 Guide bushing spindle synchronization	Δ	Δ	Δ	Δ	0	0	_	_	_	_
	9		+									
		Tool spindle synchronization I A (Spindle-Spindle, Polygon)	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
		2 Tool spindle synchronization I B (Spindle-Spindle, Polygon)	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
		Tool spindle synchronization I C	Δ	Δ	Δ	Δ	0	0	_	_	_	Δ
	10	Spindle-NC axis, Polygon) Tool spindle synchronization II (Hobbing)	Δ	Δ	Δ	Δ	0	0		_	_	Δ
	11	Spindle speed clamp	0	0	0	0	0	0	0	0	0	0
	13	Spindle oscillation	Δ	Δ	Δ	Δ	_	_	_	_	_	_
	1/1	Spindle superimposition control	Δ	Δ	Δ	Δ	0	0		_	_	
			Δ	Δ	Δ	Δ			_	_		Δ
	15	Multiple spindle synchronization set control	0	0	0	0	0	0	0	_	_	0
	16	Spindle speed fluctuation detection	Δ	Δ	Δ	Δ	0	0	0	_	_	_
	17	Spindle motor temperature output to PLC	0	0	0	0	0	0	0	0	0	_
2	То	ol functions (T)										
	1	Tool functions (T command)	0	0	0	0	0	0	0	0	0	0
3	Mi	scellaneous functions (M)		_		1						
	1	Miscellaneous functions	0	0	0	0	0	0	0	0	0	0
	2	Multiple M codes in 1 block	0	0	0	0	0	0	0	0	0	0
	3	M code independent output	0	0	0	0	0	0	0	0	0	0
	4	Miscellaneous function finish	0	0	0	0	0	0	0	0	0	0
	5	M code output during axis traveling	0	0	0	0	0	0	_	_	_	0
		Miscellaneous function command high-speed output	0	0	0	0	0	0	0	0	0	0
4		nd miscellaneous functions (B)					-	-		-		
	1	2nd miscellaneous functions	0	0	0	0	0	0	0	0	0	0
		2nd miscellaneous function name extension	0	0	0	0	0	0	0	0	0	0
		ompensation ol length / Tool position										
	1		0	0	0	0	0	0	0	0	0	0
	2	Tool position offset	_	_	_	_	_	_	_	_	_	_
	3	Tool compensation for additional axes	0	0	0	0	0	0	0	0	0	0
	4	Tool position compensation (G43.7)	_		_		_	_	_	_	_	_
_	_		•									

			Mag	hinina c	enter sys	tem				
M800	W	M8		M80W	M	80		80	C80	General explanation
850W I	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_	
							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-71		Multiple-spindle control is a function that controls all the spindles except the first spindle (main spindle) in a machine tool equipped with the second, third and fourth spindles (sub-spindles) in addition to the first spindle.
_	_	_	_	_	_	_	_	_	_	This function controls the spindles in a machine tool equipped with several spindles.
0	0	0	0	0	0	0	_	_	0	With this function, commands to the spindle are performed with one S command, and a signal from the PLC determines which spindle is selected.
0	0	0	0	0	0	0	0	0	0	This function stops the spindle rotation at a certain position.
0	0	0	0	0	0	0	0	_	0	This function enables one spindle drive unit to be also used as the C axis (rotary
Δ	Δ	Δ	Δ	_	_	_	_	_	Δ	axis) using an external signal. This control enables C axis positioning while a long workpiece is controlled by front and back spindles that are in synchronization with each other. Under this control, the machine can perform milling at the center of workpiece.
0	0	0	0	0	0	0	_		0	In a machine with two or more spindles, this function controls the rotation speed
0	0	0	0	0	0	0	_	_	0	and phase of one selected spindle (synchronized spindle) in synchronization with the rotation of the other selected spindle (basic spindle). There are two methods for
_	_	_	_		_	_	_	_	_	giving commands: G code and PLC. This function is used for a machine with a spindle motor to rotate a guide bushing. It synchronizes the guide bushing spindle (G/B spindle) with the spindle motor used as a reference (basic spindle).
										In a machine containing a rotary tool axis and that has a spindle controlled as
Δ	Δ	Δ	Δ	0	0	0	_	_	_	In a machine containing a rotary tool axis and or an as a sprintee controlled as the workpiece axis, spindle-spindle polygon machining can be carried out by controlling the workpiece axis rotation in synchronization with the rotation of the rotary tool axis. In a machine containing a workpiece axis and that has a spindle controlled as the
Δ	Δ	Δ	Δ	0	0	0	_	_	_	rotary tool axis, spindle-spindle polygon machining can be carried out by controlling the rotary tool axis rotation in synchronization with the rotation of the workpiece axis.
Δ	Δ	Δ	Δ	0	0	_	_	_	_	This function controls the workpiece (spindle) and tool (NC axis) so that they synchronously rotate at the commanded ratio, allowing polygon machining.
Δ	Δ	Δ	Δ	0	0	_	_	_	_	This function is to cut the gear with a hob (hob cutter).
0	0	0	0	0	0	0	0	0	0	The spindle rotation speed is clamped between max. rotation speed and min. rotation speed. This function reciprocates (oscillates) the spindles with designated amplitude and
Δ	Δ	Δ	Δ		_	_	_	_	_	This function recording is solutional to spindles with designated amplitude and frequency. Spindles are controlled by superimposing the rotation speed of one spindle on the
_	_	_	_	_	_	_	_	_	_	rotary speed of other spindle. Use this function when the tool spindle needs to be rotated with the superimposed speed on the spindle rotation speed.
_	_	_	_	_	_	_	_	_	0	By setting the parameter, spindle synchronization I, tool spindle synchronization IA/ IB (spindle-spindle, polygon), tool spindle synchronization II (hobbing) and spindle superimposition control can be executed simultaneously for multiple sets of spindles.
Δ	Δ	Δ	Δ	0	0	0	_	_	_	When this function is valid and the spindle actual speed fluctuates for the commanded speed by the program due to external factors such as bad fluctuation, the NC outputs the signal to PLC and the operation error cocurs. PLC can take the necessary measure for the fluctuation of the spindle speed using the output signal from the NC.
0	0	0	0	0	0	0	0	0	_	This function outputs spindle temperature to an R register assigned for each spindle.
0	0	0	0	0	0	0	0	0	0	The tool function is commanded with an 8-digit number following the address T (T0 to T99999999) to specify the tool No. In the controller for a lathe, the tool compensation (tool length compensation, tool nose wear compensation) Nos. are also indicated.
		0		-					0	Miscellaneous function, or M function, is used to command auxiliary functions
0	0	0	0	0	0	0	0	0	0	for NC, such as rotating the spindle forward / backward or stopping it, as well as turning the cooling oil ON/OFF.
0	0	0	0	0	0	0	0	0	0	Multiple sets of M commands can be issued in a block. When the M00, M01, M02 or M30 command is issued during an automatic operation (tape, memory, M01) or by a manual numerical command, the signal of
0	0	0	0	0	0	0	0	0	0	this function is output. It is turned OFF after the miscellaneous function finishes or by the reset & rewind signal.
0	0	0	0	0	0	0	0	0	0	These signals inform the CNC system that a miscellaneous function (M), spindle function (S), tool function (T) or 2nd miscellaneous function (A, B, C) has been issued, and that the PLC that has received it has completed the required operation. They include miscellaneous function finish signal 1 (FIN1) and miscellaneous function finish signal 2 (FIN2).
_	_	_	_	_	_	_	_	_	_	This function controls the timing at which miscellaneous functions are output, and it outputs a miscellaneous function when the axis reaches the designated position movement.
0	0	0	0	0	0	0	0	0	0	This function shortens a processing time per miscellaneous function.
Т						I		l		The code data and start signals are output when an 8-digit number is assigned
0	0	0	0	0	0	0	0	0	0	following the address code A, B or C . whichever does not duplicate the axis name being used. The 2nd miscellaneous function name same as the additional axes (A, B, C) can be
0	0	0	0	0	0	0	0	0	0	used by specifying the command address of the 2nd miscellaneous function with two characters.
0	0	0	0	0	0	0	0	0	0	These commands make it possible to control the axis movement by offsetting the position of the end point of the travel command by the amount set in the tool compensation screen.
0	0	0	0	0	0	0	0	0	0	This function uses commands to control the movement by changing the end point positions of the movement commands to positions which have been extended or reduced for a tool compensation amount.
_	_	_	_	_	_	_	_	_	_	The tool compensation for a lathe is valid for the X and Z axes. If an additional axis (Y axis) is added, the tool compensation will be validated for the additional axis.
Δ	Δ	Δ	Δ	_	_	_	_	_	_	The position compensation of a turning tool is executed when turning is performed in a machine of machining center system. " Option is "turning machining tool compensation".

 $\hbox{OStandard} \ \ \triangle \hbox{Optional} \ \ \square \hbox{Selection} \ \ \hbox{Specifications of separated-type display are classified with "Windows-based" and non-Windows-based}$

						Lathe	system				
	class	M80	oow	M8	00S	M80W	M	80		30	C80
	Class	M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_
2 T	pol radius		l .				Турен	Турев	Турск	Турев	
	Tool radius compensation	_	_	_	_	_	_	_	_	_	-
ŀ											
:	2 3-dimensional tool radius compensation	Δ*	Δ*	_	_	_	_	_	_	_	_
	Tool nose radius compensation (G40 / 41 / 42)	0	0	0	0	0	0	0	0	0	0
-											
ŀ	Automatic decision of nose radius compensation direction (G46 / 40)	0	0	0	0	0	0	0	0	0	0
	Tool radius compensation diameter designation	_	_	_	_	_	_	_	_	_	_
3 T	ool offset amount										
Ī	Number of tool offset sets										
	1 99 sets	_	_		_			0	0	0	
	2 128 sets 3 200 sets	0	0	0	0						0
1	3 200 sets 4 256 sets	_			_	0	0	_	_	_	Δ
	5 400 sets	Δ	Δ	Δ	Δ	_	_	_	_	_	_
	6 999 sets	Δ	Δ	Δ	Δ	_	_	_	_	_	
	2 Offset memory	_	_	_	_	_	_	_	_	_	
	1 Tool shape / wear offset amount	0	0	0	0	0	0	0	0	0	0
	2 Compensation type selection by parameter	_	_	_	_	_	_	_	_	_	_
	2 Compensation type selection by parameter	_	_	_				_		_	_
	Number of tool offset sets allocation to part systems	0	0	0	0	0	0	0	_	_	_
Co	ordinate system										
10	coordinate system type and setting										
	Machine coordinate system	0	0	0	0	0	0	0	0	0	0
	2 Coordinate system setting	0	0	0	0	0	0	0	0	0	0
	Automatic coordinate system setting	0	0	0	0	0	0	0	0	0	0
H	Workpiece coordinate system selection										
l		_		_		_	_	_	_	_	
	1 Workpiece coordinate system selection (6 sets)	0	0	0	0	0	0	0	0	0	0
	2 Extended workpiece coordinate system selection (48 sets) G54.1P1 to P48	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
	Extended workpiece coordinate system selection (96 sets) G54.1P1 to P96 Extended workpiece coordinate system selection (300 sets) G54.1P1 to P300	_	<u> </u>		_						
	Extended Workpiece coordinate system second rood sets) cost. If it to root										
	External workpiece coordinate offset	0	0	0	0	0	0	0	0	0	0
	Workpiece coordinate system preset (G92.1)	0	0	0	0	0	0	0	0	0	0
	Local coordinate system	0	0	0	0	0	0	0	0	0	0
		-			-	-		-	_	-	
	B Coordinate system for rotary axis	0	0	0	0	0	0	0	0	0	0
	,										
!	Plane selection	0	0	0	0	0	0	0	0	0	0
1	0 Origin set / Origin cancel	0	0	0	0	0	0	0	0	0	0
1	1 Counter set	0	0	0	0	0	0	0	0	0	0
1	2 Workpiece position offset for rotary axis	_	_	_	_	_	_	_	_	_	
1	Workpiece coordinate system shift	0	0	0	0	0	0	0	0	0	0
2 F	eturn										
L	Manual reference position return	0	0	0	0	0	0	0	0	0	0
	Automatic 1st reference position where										
	2 Automatic 1st reference position return	0	0	0	0	0	0	0	0	0	0
	1										

			Mag	chining c	enter sys	tem				
M80	00W	M8	008	M80W		80	Е	80	C80	1
M850W	Ī	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_	General explanation
0	0	0	0	0	0	0	0	0	0	This function provides tool radius compensation. Through a combination of the G command and D address assignment, the actual tool center path is compensated either inside or outside the programmed path by an amount equivalent to the tool
Δ	Δ	Δ	Δ	_	_	_	_	_	_	radius. This command serves the function of compensating the spherical radius of ball end mills. It compensates the actual tool center path to be either more outside or inside the programmed path by an amount equivalent to the tool radius amount in accordance with the 3-dimensional vectors. "This function is available during
Δ	Δ	Δ	Δ	_	_	_	_	_	_	program format switch for L system. The tool nose of the specified tool No. is assumed to be a half circle of the radius R, and compensation is applied so that the half circle touches the programmed path. *Option for M system is "turning machining tool compensation".
_	_	_	_	_	_	_	_	_	_	The nose radius compensation direction is automatically determined from the tool tip and the specified movement vector.
0	0	0	0	0	0	0	0	0	0	Tool diameter designation handles the compensation amount as diameter value and compensates the amount set in the tool compensation amount screen when tool radius compensation (G41/G42) is commanded.
	_	_	_	_	_	_	_	0	_	
_	_	_	_	_	_	_	_	_	_	
0	0	0	0		_		0	_	0	The number of configurable sets of tool data such as tool length compensation and tool radius compensation.
Δ	Δ	Δ	Δ	0	0	0	_	_	Δ	-
Δ	Δ	Δ	Δ	_	_	_	_	_	_	
0	0	0	0	0	0	0	0	0	0	This function registers the tool shape compensation and wear compensation
	0	0	0	0	0	0	0		0	amounts. This function switches the tool compensation type to the tool compensation type
0	0	0	0	0	0	0	_	_	_	Ill with the parameter. This function enables tool compensation for a turning tool by registering the tool compensation amount of the base axes JJK and tool tip point for a machining center system. *Variable number of per-part-system tool offset sets
0	0	0	0	_	_	_	_	_	_	variable further to partylar system tool diset sets. The number of tool offset sets can be set per part system. There are two types of the allocation: "Arbitrary allocation" which allocates the number of tool offset set set se each part system arbitrarily and "Fixed allocation" which automatically allocates the number of tool offset sets to each part system equally, and the type can be selected using the parameter.
										This shows the coordinate systems handled by the NC. The points that can be
										commanded with the movement command are points in the local coordinate system or machine coordinate system.
0	0	0	0	0	0	0	0	0	0	The machine coordinate system is used to express the prescribed positions (such as the tool change position and stroke end position) that are specific to each machine, and it is automatically set immediately upon completion of the first dog-type reference position return after power ON, or immediately after power ON if the absolute position specifications apply. The zero point position of the program coordinate system can be shifted to an
0	0	0	0	0	0	0	0	0	0	arbitrary position by G92 command.
0	0	0	0	0	0	0	0	0	0	After turning the power ON, even without executing the reference position return, the basic machine coordinate system and the workplece coordinate system are set automatically.
0	0	0	0	0	0	0	0	0	0	When multiple workpieces with the same shape are to be machined, these commands enable the same shape to be machined by executing a single machining program in the coordinate system of each workpiece.
Δ	Δ	Δ	Δ	0	0	0	0		Δ	In addition to the six workpiece coordinate systems G54 to G59, 48/96 sets of
Δ	Δ	Δ	Δ		_		_	_	_	workpiece coordinate systems can be used by assigning G54.1Pn command.
Ο Δ	Ο Δ	Ο Δ	Ο Δ	0 -	0 -	0 -	0 -	0 -	0	An external workpiece coordinate offset that serves as a reference for all the workpiece coordinate systems is available outside the workpiece coordinates. By setting the external workpiece coordinate offset, the external workpiece coordinate system can be shifted, and all the workpiece coordinate systems can be simitteneously shifted by an amount equivalent to the offset. This function presets the workpiece coordinate system, which has been shifted by the programmed command or the manual operation, as the workpiece coordinate system which has been offset by the programmed command (G92.1) from the machine zero point by an amount equivalent to the workpiece coordinate offset amount.
0	0	0	0	0	0	0	0	0	0	This function is for assigning another coordinate system in the workpiece coordinate system currently selected. This enables the workpiece coordinate system to be changed temporarily.
0	0	0	0	0	0	0	0	0	0	The rotary axis includes the rotating type (short-cut valid/invalid) or the linear type (workpiece coordinate position linear type, all coordinate position linear type). The workpiece coordinate position range is 0 to 359.999° for the rotating type, and 0 to 9999.999° for the linear type.
0	0	0	0	0	0	0	0	0	0	By issuing a G code, it is possible to specify the planes for the arc, tool radius compensation, coordinate rotation and other commands.
0	0	0	0	0	0	0	0	0	0	Origin set is a function that shifts the coordinate system so that the current position is set as the zero point in the workpiece coordinate system containing the workpiece coordinate system's offset value. Origin cancel is a function that manually cancels all deviated amounts, and shifts to the designated zero point with
0	0	0	0	0	0	0	0	0	0	the workpiece offset. The relative position counter can be set to an arbitrary value from the setting and
Δ	Δ	Δ	Δ	0	0		_		_	display unit screen. For a machine equipped with a table rotary axis, this function corrects installation errors between workpiece coordinate zero point and workpiece reference position.
_	_	_	_	_	_	_	_	_	_	When a workpiece coordinate system which is considered at programming is misaligned with an actual set workpiece coordinate or a workpiece coordinate set by automatic coordinate system setting, the measured workpiece coordinate system can be shifted to the workpiece coordinate system at the program creation so that the machining can be performed without modification of the machining program.
0	0	0	0	0	0	0	0	0	0	This function enables the tool to be returned manually to a position specific to the
										machine (reference position). By commanding the G code during an automatic operation, the 1st reference
0	0	0	0	0	0	0	0	0	0	position return is executed. If an intermediate point is commanded, a positioning is made to the point at rapid traverse rate, then each axis returns to its 1st reference position.

							Lathe	system				
		class	M80	00W	M8	00S	M80W	M	80		80	C80
			M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_
	3	2nd, 3rd, 4th reference position return	0	0	0	0	0	0	0	0	0	0
	4	Reference position check	0	0	0	0	0	0	0	0	0	0
	5	Absolute position detection	0	0	0	0	0	0	0	0	0	0
	6		0	0	0	0	0	0	0	0	0	0
	_	ation support functions										
	1	ogram control Optional block skip	0	0	0	0	0	0	0	0	0	0
	2	Optional block skip addition	0	0	0	0	0	0	0	_	_	0
	3	Single block	0	0	0	0	0	0	0	0	0	0
2	Pro	ogram test										
	1	Dry run	0	0	0	0	0	0	0	0	0	0
	2	Machine lock	0	0	0	0	0	0	0	0	0	0
	3	Miscellaneous function lock	0	0	0	0	0	0	0	0	0	0
	4				_		_	_		_	_	
		1 Graphic check 2 3D solid program check	0	0	0	0	0	0	0	0	0	
		Graphic check rotary axis drawing	Δ	Δ	Δ	Δ	0	0	0	0	0	
	5	Graphic trace	Δ		Δ							
		1 Graphic trace	0	0	0	0	0	0	0	0	0	_
		2 Graphic trace rotary axis drawing	Δ	Δ	Δ	Δ	0	0	0	0	0	_
	6	Machining time computation	0	0	0	0	0	0	0	0	0	_
	7	Manual arbitrary reverse run (Program check operation)	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
	8		0	0	0	0	0	0	0	0	0	0
3	\Box	ogram search / start / stop		ı								
	1	Program search	0	0	0	0	0	0	0	0	0	0
	2	Sequence number search	0	0	0	0	0	0	0	0	0	0
	3	Verification stop	0	0	0	0	0	0	0	_	_	0
	4	Program restart	0	0	0	0	0	0	0	0	0	0
	5	•	0	0	0	0	0	0	0	0	0	0
		NC reset	0	0	0	0	0	0	0	0	0	0
	7	Feed hold	0	0	0	0	0	0	0	0	0	0
	8	Search & Start	0	0	0	0	0	0	0	0	0	0
	ш	Auto-restart	0	0	0	0	0	0	0	0	0	0
4	Inte	errupt operation										
	1	Manual interruption	0	0	0	0	0	0	0	0	0	0
	2	Automatic operation handle interruption	0	0	0	0	0	0	0	0	0	0
	3	Manual absolute switch	0	0	0	0	0	0	0	0	0	0
	4	Thread cutting cycle retract	0	0	0	0	0	0	0	_	_	0
	5	Tapping retract	0	0	0	0	0	0	0	0	0	0
	6	Manual numerical value command	0	0	0	0	0	0	0	0	0	0
	7	Arbitrary reverse run	_	_	_	_	_	_	_	_	_	_
	8	MDI interruption	0	0	0	0	0	0	0	0	0	0
	9	Simultaneous operation of manual and automatic modes	0	0	0	0	0	0	0	0	0	0
	10	Simultaneous operation of JOG and handle modes	0	0	0	0	0	0	0	0	0	0
	11	Reference position retract	0	0	0	0	0	0	0	0	0	0
1 1	ш	<u>i</u>										

			Mar	chining c	enter sve	tem				
M80	00W	M8	00S	M80W		80	E	80	C80	Compared available to a
M850W	M830W	M850S	M830S	_	M80	M80	E80	_E80_	_	General explanation
0	0	0	0	0	TypeA	TypeB	TypeA	TypeB	0	As in the automatic 1st reference position return, by commanding the G code during an automatic operation, an axis returns to a certain position specific to the
0	0	0	0	0	0	0	0	0	0	machine (2nd/3rd/4th reference position). By issuing a G code, a machining program where the tool is programmed to start off from the reference position and return to the reference position can be checked
0	0	0	0	0	0	0	0	0	0	if the tool will return successfully to the reference position. With this function, a battery stores the relation of the actual machine position and the machine coordinate kept in the CNC even during the power OFF, and an
0	0	0	0	0	0	0	0	0	0	automatic operation is enabled without executing a reference position return. By specifying the tool change position in a parameter and also assigning a tool change position return command in a machining program, the tool can be
										changed at the most appropriate position.
0	0	0	0	0	0	0	0	0	0	When "/" (slash code) is programmed at the head of a block, and the optional block skip input signal from the external source is turned ON for automatic operation, the
0	0	0	0	0	0	0	_	_	0	block with the "/" code is skipped. When "/n (n: 1 to 9)" is programmed at the head of a block, and the optional block skip input n signal from the external source is turned ON for automatic operation,
0	0	0	0	0	0	0	0	0	0	the block with the "/n" code is skipped. The commands for automatic operation can be executed one block at a time (block stop) by turning ON the single block input signal.
0	0	0	0	0	0	0	0	0	0	F code feed commands for automatic operation can be switched to the manual feedrate data of the machine operation board by turning ON the dry run input signal.
0	0	0	0	0	0	0	0	0	0	When the machine lock input signal is set to ON, the CNC operations can be executed without actually moving the NC axis. When the "External input" signal or "Miscellaneous function lock" signal is turned
0	0	0	0	0	0	0	0	0	0	ON, the output signals of M, S, T, and B (2nd miscellaneous function) will not be output to the PLC. This is useful when checking only travel commands in a program check.
0	0	0	0	0	0	0	0	0		This function traces the programmed movement path without executing an automatic operation. It enables three-dimensional drawing and also rotary axis
0	0	0	0	0	0	0	0	0		drawing. By using this function, machining programs can be checked before they are actually run.
										are actually run.
0	0	0	0	0	0	0	0	0	_	This function traces the machine tool's machine positions. It draws the movement path of an actual automatic or manual operation, and the tool tip movement path. The function also monitors the machine operations during machining, It enables.
										the drawing of a rotary axis as well. This function analyzes the machining program without moving the axis and
0	0	0	0	0	0	0	0	0		calculates the approximate time required for machining. The manual arbitrary reverse run can be performed by controlling the feedrate
Δ	Δ	Δ	Δ	0	0	0	_	_	Δ	being in the automatic operation in the memory or MDI mode in proportion to the manual feedrate by jog or the rotation speed by manual handle. This function checks whether a program error occurs by operating the machining
0	0	0	0	0	0	0	0	0	0	program without the axes movements. The estimated machining time can be checked in time shorter than the actual execution time of the machining program.
0	0	0	0	0	0	0	0	0	0	This function specifies the program No. of the program to run automatically and
0	0	0	0	0	0	0	0	0	0	calls the program. Blocks can be indexed by setting the program No., sequence No. and block No.
0	0	0	0	0	0	0	_	_	0	of the program to run automatically. This function enables the single block stop status to be established at any block without having to turn the SINGLE BLOCK switch ON.
0	0	0	0	0	0	0	0	0	0	When a machining program is to be resumed after suspended midway due to tool damage or for some other reason, this function searches the program and the block to resume and enables machining to be resumed from the block.
0	0	0	0	0	0	0	0	0	0	With the input of the automatic operation start signal (change from ON to OFF), automatic operation of the program that was found by an operation search is started by the controller (or the halted program is restarted).
0	0	0	0	0	0	0	0	0	0	This function enables the controller to be reset.
0	0	0	0	0	0	0	0	0	0	When the feed hold signal is set to ON during automatic operation, the machine feed is immediately decelerated and stopped.
0	0	0	0	0	0	0	0	0	0	If the "Search & Start" signal is input when the memory mode is selected, the designated machining program is searched and executed from the beginning.
0	0	0	0	0	0	0	0	0	0	A machining program is restarted automatically at the completion of the machining program execution.
0	0	0	0	0	0	0	0	0	0	Manual interrupt is a function that enables manual operations to be performed during automatic operation.
0	0	0	0	0	0	0	0	0	0	The handle command can interrupt and be superimposed onto a command without suspending automatic operation to move the machine by rotating the
0	0	0	0	0	0	0	0	0	0	manual pulse generator during automatic operation. The program absolute positions are updated by an amount equivalent to the distance by which the tool is moved manually when the manual absolute switch signal is turned ON.
0	0	0	0	0	0	_	_	_	_	signal is turned over. This function suspends the thread cutting cycle if a feed hold signal has been input during thread cutting cycle.
0	0	0	0	0	0	0	0	0	0	If tapping is interrupted by a reset or emergency stop signal that is input during tapping and the tap is left engaged inside the workpiece, the tap tool engaged inside the workpiece can be rotated in the reverse direction so that it will be
0	0	0	0	0	0	0	0	0	0	disengaged by inputting the tap retract signal. On the screen of the setting and display unit, the M, S and T (and B when 2nd miscellaneous function is valid) commands can be executed by setting numerical valves and pres
0	0	0	0	0	0	_	_	_	_	values and pressing [INPUT]. This function allows a program to run the executed blocks backward after the block stop in the automatic operation.
0	0	0	0	0	0	0	0	0	0	This function enables MDI programs to be executed during automatic operation in the single block stop status. When the modal status is changed in a MDI program, the modal status in the automatic operation mode is also changed.
0	0	0	0	0	0	0	0	0	0	This function enables manual operations to be performed during automatic operation by selecting an automatic operation mode (tape, MDI or memory) and manual mode (handle, step, jog or manual reference position return) simultaneously. (Arbitrary feed based on the PLC is also possible.)
0	0	0	0	0	0	0	0	0	0	When executing the jog feed and handle feed, both these feeds are available without changing the mode each time by inputting the jog mode signal and simultaneous operation of jog and handle modes signal to the control unit.
0	0	0	0	0	0	0	0	0	0	When the retract signal is turned ON during the automatic and manual operation, this function can retract the tool immediately to a set reference position.
	1									position of the state of

Circular cutting

				0014		000		system	00		00	000
		class	M850W	00W M830W	M850S	00S M830S	M80W —	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	C80 —
12	T	ool retract and return	Δ	Δ	Δ	Δ	0	О	О	-	- Турев	_
13	S	kip retract	 _	_	_	_		_		_	_	
_	\vdash	LC interruption	0	0	0	0	0	0	0	0	0	0
_	+	Machining interruption	<u> </u>	_	_	_	_	_	_	_	_	Δ
	_	n support functions										
$\overline{}$	_	nining method support functions										
1	1	rogram Subprogram control [Layers]	010	010	010	010	010	010	010	010	010	08
			+									
	2	Figure rotation		_	_	_	_	_	_	_	_	_
	\vdash	Scaling Avia name quittab	0	0	0	0	_ _	0	_ _	0	_ o	-
2	⊢	Axis name switch Macro program	+ -									
Ē	1		04	04	04	04	04	04	04	04	04	04
	2	Machine tool builder macro	0	0	0	0	0	0	0	0	0	0
	3	Macro interruption	0	0	0	0	0	0	0	0	0	0
	4			T _	_	T _		_		_		
		1 200 sets 2 600 sets	+ =		_		_	_	0	0	0	
		3 700 sets	0	0	0	0	0	0	_		_	0
		4 8000 sets 6 (600+100×number of part systems) sets	Δ 0	Δ	Δ	Δ 0	0	0		_	_	0
		7 (7900+100×number of part systems) sets	Δ	Δ	Δ	Δ	0	0	_	_	_	_
3	+	ixed cycle										
	2	3	0	0	0	0	0	0	0	0	0	0
	3		T _		_	_				_	_	_
	4	3 0	0	0	0	0	0	0	0	0	0	0
	5 6		Δ	Δ	Δ	Δ	0	0	0	0	0	Ο Δ
	7		Δ	Δ	Δ	Δ	_	_	_	_	_	_
4		 firror image										
4	1		0	0	0	0	0	0	0	0	0	0
	2	,	0	0	0	0	0	0	0	0	0	0
	3			_	_	_	_	_	_	_	_	_
	4	Mirror image for facing tool posts	0	0	0	0	0	0	0	_	_	0
	5	T code mirror image for facing tool posts	0	0	0	0	0	0	0	_	_	0
5	С	Coordinate system operation										
	1	Coordinate rotation by program	Δ	Δ	Δ	Δ	0	0	_	_	_	Δ
	2	Coordinate rotation by parameter	-	_	_	_		_	_	_	_	_
	3	3-dimensional coordinate conversion	Δ	Δ	Δ	Δ	0	0	_	_	_	_
6	С	imension input										
	1	Corner chamfering / Corner R	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
	2	Linear angle command	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
	L	Geometric command	0	0	0	0	0	0	0	0	0	0
7	+	Polar coordinate command xis control	_	_	_	_	_	_	_	_	_	_
	1	Chopping	T									
		1 Chopping	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ
	2	Normal line control		_	_	_	_	_	_	_	_	_
	1											

			Mad	chining c	enter sys	tem				
M80	oow	M8	00S	M80W		80		80	C80	General explanation
M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_	Gonoral explanation
Δ	Δ	Δ	Δ	0	О	О	-	-	_	Even if the machining program's operation is halted and the tool is retracted to change the tool or check the workpiece, etc., the tool can be returned to the halted point (machining halted point) and resume machining.
0	0	0	0	0	0	0	_	_	0	This function is used to return in the direction opposite the travel direction when the skip signal is input during G31 command.
0	0	0	0	0	0	0	0	0	0	The interrupt program set with the R register is executed with the signals from the
_	_		_	_					Δ	PLC during single block stop in program operation or during the manual mode. Machining interruption is a function which enables interrupt operations while a
										program is normally executed.
						1		1		When the same pattern is repeated during machining, the machining pattern is
010	010	010	010	010	010	010	010	010	08	registered as one subprogram, which can be called from the main program as required, thereby realizing the same machining easily. This enables the efficient use of programs.
Δ	Δ	Δ	Δ	_	_	_	_	_	_	If the same pattern is used repeatedly on a concentric circle, one of the rotary machining patterns can be registered as a subprogram. When the subprogram is called from the main program, if the rotation center is designated, a path similar to the rotary phase can be easily created on the concentric circle. This simplifies the creation of a program.
Δ	Δ	Δ	Δ	0	0	0	0	_	Δ	The shape commanded by a program can be extended or reduced to the desired size by applying a scale factor to the movement axis command position.
	_		_		_	_	_	_	_	The axis name switch function switches the name of a command axis and a
						I				control axis.
04	04	04	04	04	04	04	04	04	04	In order to execute one integrated function, a group of control and arithmetic instructions can be used and registered as a macro program.
0	0	0	0	0	0	0	0	0	0	This function enables macro programs exclusively designed for use by a specific machine tool builder to be registered in addition to the regular user macro programs.
0	0	0	0	0	0	0	0	0	0	By inputting a user macro interrupt signal from the PLC, the program being
					 		 			currently executed is interrupted and other programs can be called instead.
_	_	1	_	_	_	_	_	0		
	_	_	_	_	_	_	0	_	_	Programming can be made flexible and versatile by designating variables instead of directly assigning numbers to addresses in programs and by supplying the values
Δ	Ο	Ο	Ο	0	0	0		_	0	of those variables as required when running the programs.
0	0	0	0	0	0	_	_	_	0	Arithmetic operations (adding, subtracting, multiplying and dividing) can also be conducted for the variables.
Δ	Δ	Δ	Δ	0	0	_	_	_		
0	0	0	0	0	0	Γο	0	0	0	
_	_	_	_	_	_	_	_	_	_	These functions enable drilling, tapping and other hole machining cycles to be assigned in a simple 1-block program. Special fixed cycles must always be used in
Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	combination with fixed cycles.
0	0	0	0	0	0			_		The shape normally programmed in several blocks for rough cutting, etc. in the turning machining can be commanded in one block. This function is useful for
_	_		_		_	_	_	_		simplifying machining programs.
0	0	0	0	0	0	0	_	_	_	In deep hole drilling, cutting and retract are repeated and the workpiece is machined multiple times. In addition, when PLC signals are input during cutting, the cutting for the time concerned is skipped. In this way, the load applied to the tool is reduced.
0	0	0	0	0	0	0	0	0	0	A parameter is used to designate the axis for which the mirror image function is to
0	0	0	0	0	0	0	0	0	0	be executed before the machining program is run. Signals from an external device (PLC) request the mirror image operation either
0	0	0	0	0	0	0	0	0	0	during or before the execution of a machining program. Using a program for the left or right side of an image, this function can machine the
	0	0	0	0	-	-	0	-	0	other side of the image when a left/right symmetrical shape is to be cut. With machines in which the base tool post and the facing tool post are integrated
_	_	_	_	_	_	_	_	_		in one post, this function enables the programs prepared for cutting at the base side to be executed by the tools on the facing side as well. When tools that correspond to tool Nos. 1 to 64 are selected (T commands) but
_	_	_	_	_	_	_	_	_	_	these are the tool Nos. for which the facing tool post mirror image function has already been designated with a parameter, the status equivalent to G68 (facing tool post mirror image ON) is established.
Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	When it is necessary to machine a complicated shape at a position that has been rotated with respect to the coordinate system, you can machine a rotated shape by programming the shape prior to rotation on the local coordinate system, and then specifying the rotation center coordinates and rotation angle by means of this coordinate rotation command. If a deviation occurs between the workpiece alignment line and the machine
Δ	Δ	Δ	Δ	_	_	_	_	_	_	coordinate system's coordinate axis when the workpiece is mounted, the machine can be controlled to rotate the machining program coordinates according to the workpiece alignment line deviation.
Δ	Δ	Δ	Δ	0	0	_	_	_	Δ	With the 3-dimensional coordinate conversion function, a new coordinate system can be defined by rotating and moving in parallel the zero point in respect to the X, Y and Z axes of the currently set workpiece coordinate system.
Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	This function executes corner processing by automatically inserting a straight line
Δ	Δ	Δ	Δ	0	0	0	0	_	Δ	or arc in the commanded amount between two consecutive travel blocks. The end point coordinates are automatically calculated by assigning one element (one component of the selected plane) of the end point coordinates and the linear
Δ	Δ	Δ	Δ	0	0	0	0	_	_	angle. When it is difficult to find the intersection point of two straight lines with a continuous linear interpolation command, this point can be calculated automatically by programming the command for the angle of the straight lines.
Δ	Δ	Δ	Δ	0	0	0	_	_	Δ	With this function, the end point position is commanded with the radius and angle.
Δ	Δ	Δ	Δ	0	0	0	_	_	Δ	This function continuously raises and lowers the chopping axis independently of program operation. During the grinding operation, chopping can produce a better surface accuracy than using albrasive grain. This function controls the swiveling of the C axis (rotary axis) so that the tool
0	0	0	0	0	0	-	_	-	0	is always pointing in the normal line direction for the X and Y axes movement
0	0	0	0	0	0	0	0	0	0	commands during program operation. In circular cutting, a system of cutting steps are performed; first, the tool departs from the center of the circle, and by cutting along the inside circumference of the circle, it draws a complete circle, then it returns to the center of the circle.

 $\hbox{OStandard} \ \ \triangle \hbox{Optional} \ \ \square \hbox{Selection} \ \ \hbox{Specifications of separated-type display are classified with "Windows-based" and non-Windows-based}$

[M800/M80/F80]S/M ver F2	[C80]SAW ver F

		MAG	00W	NAO.	00S	M80W	system M	80		80	C80
	class		T .			IVIOUVV	M80	M80	E80	E80	Col
		M850W	M830W	M850S	M830S	_	TypeA	ТуреВ	TypeA	ТуреВ	
4	Vibration cutting control								_	-	_
٨	Multi-part system control										
١.				_	_	_	_	_			_
1	Timing synchronization between part systems	0	0	0	0	0	0	0	_	_	0
2	Start point designation timing synchronization	0	0	0	0	0	0	0			0
3	1 0 0 7	+ -									
	1 Mixed control (cross axis control)	Δ	Δ	Δ	Δ	0	0	_	_	-	Δ
	2 Arbitrary axis exchange control	Δ	Δ	Δ	Δ	0	0	_	_	_	Δ
4		_		_							
Ī	· ·			_			_				
	1 Control axis superimposition	Δ	Δ	Δ	Δ	0	0	_	_	_	
L	2 Arbitrary axis superimposition control	Δ	Δ	Δ	Δ	_	_	_	_	_	
5	Control axis synchronization between part systems	Δ	Δ	Δ	Δ	0	0	0	_	-	Δ
H											
6	Balance cut	0	0	0	0	0	0	_	_	-	0
-	Common moreous for next or atoms						_				
7		0	0	0	0	0	0	_	_		0
8	Multi-part system simultaneous thread cutting 1 Two-part system simultaneous thread cutting	Δ	Δ	Δ	Δ	0	0				0
	Two-part system simultaneous thread cutting	Δ	Δ	Δ	Δ		0			_	
	O M. His post of stand circultaneous through a sting	Δ		Δ	Δ						
	2 Multi-part system simultaneous thread cutting			Δ		_	_	_	_	_	
_	Multi-part system program management	0	0	0	0	0	0	0	_	_	0
_	Synchronization between part systems	+ -									
	1 Single block between part systems	Δ	Δ	Δ	Δ	0	0	0	_	-	Δ
	2 Dwell / Miscellaneous function time override	Δ	Δ	Δ	Δ	0	0	0	_	-	Δ
	3 Synchronization between part systems OFF	Δ	Δ	Δ	Δ	0	0	0	_	-	Δ
	Sub part system control I	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ
4.0	Ode and automorphis II										
12	2 Sub part system control II	Δ	Δ	Δ	Δ	0	0	_	_	_	Δ
-	Data input / output by program										
1	The state of the s	0	0	0	0	0	0	0	0	0	0
2	Compensation data input by program	0	0	0	0	0	0	0	0	0	0
3	Tool/Material shape input by program	0	0	0	0	0	0	0	0	0	0
5	API section and sub-section Nos. input / output by program	0	0	0	0	0	0	0	0	0	0
6	R-Navi data input by program	_	_		_	_	_		_		
┖		+		_		_			_		
1	Machining modal Tapping mode	0	0	0	0	0	0	0	0	0	0
2	Cutting mode	0	0	0	0	0	0	0	0	0	0
_	High-speed parts machining	+ -									
Г	Rapid traverse block overlap	Δ	Δ	Δ	Δ	0	0	0	_		Δ
上		1 4									Δ
Т	nining accuracy support functions										
	Automatic corner override	0	0	0	0	0	0	0	0	0	0
1	Deceleration check Exact stop check mode	0	0	0	0	0	0	0	0	0	0
2	·	0	0	0	0	0	0	0	0	0	0
3	Error detection Programmable in-position check	0	0	0	0	0	0	0	0	0	0
4											0

MSSOW MSSOW MSSOS MSSO				Mad	chining c	enter sys	tem				
MSSOW MSSOW SQUARES MAGOS — The part of th	M80	00W	M8	00S	M80W					C80	General explanation
When call the processing procedured, the class can be desired to the control of t	M850W	M830W	M850S	M830S	_					_	
The standard contained in a standard contained in the standard contain	_	_	_	_	_					_	vibration in synchronization with the spindle rotation to the feed axis so that an air-shot area is made. Difficult-to-cut workpieces such as stainless steel can be machined easily and at high speed. In addition, this function can reduce the heat generated by machining and extend tool life. "A vibration cutting expansion unit is required.
and inclinational processing and inclinational processing inclinational processing and processing of the processing of t											involving two or more axes (e.g. taper machining), only one axis selected vibrates.
Description of the control of the co	0	0	0	0	0	0	_	_	_	0	simultaneously run multiple machining programs independently. This function is used in cases when, at some particular point during operation, the operations of different part systems are to be synchronized or in cases when the operation of
A A A O O O O O O O O O O O O O O O O O	0	0	0	0	0	0	_	_	_	0	The synchronizing point can be placed in the middle of a block by designating the start point.
September 1 february 1				1			1				This function enables any axis to be replaced with another axis between part
commended for machinery apparent in each past projection. The first function and provide the supering course of the control of the first function of the country of the co	^	_	_	_	0	0	_	_	_	_	systems. There are two methods for giving commands: G code and PLC. An arbitrary axis can be exchanged freely across part systems in the multiple
and set in section point and set in a contract point against an extension of the set in		_	_	_							
The abbray control case in the past agricum case in moved by a supering costs in moved by a supering costs in moved by a supering costs in costs and a supering costs in the cost of the costs of the co	_	_	_	_			_	_	_	_	This function enables to superimpose on and control an axis in a part system with an axis in another part system. There are two methods for giving commands: G
Suprotructionation not mark contract assistant an arthresp contract assist with the contract assistant policy of an arthresp contract assist with the contract assistant contract assistant and arthresp contracts and arthresp contracts and the policy contracts and the p		_	_	_	_	_	_	_			The arbitrary control axis in other part system can be moved by superimposing on
control axis. There are subtractive for playing constructions (Grobes and FL) when the first in the control of											Synchronization control enables an arbitrary control axis in another part system to
the vollegoes and using them in prich residuation to residue the two ordinary in a mindige part agriculture. The committee is the control of		_				_					control axis. There are two methods for giving commands: G code and PLC.
For a machine with multiple part systems, the common varieties and tool of the common varieties and common varieties and tool of the common varieties and common varieties. The common varieties are common varieties and common varieties and common varieties and common varieties and common varieties. The common varieties are common varieties and common varieties and common varieties. The common varieties are common varieties and common varieties and common varieties. The common varieties are common varieties and common varieties and common varieties. The common varieties are common varieties and common varieties. The common varieties are common varieties and common varieties. The common varieties are common varieties and common varieties and common varieties. The common varieties are common varieties and common varieties. The common varieties are common varieties and common varieties and common varieties. The common varieties are common varieties and common varieties and common varieties and common varieties. The common varieties are common varieties and common varieties. The common varieties are common varieties and com	_	_	_	_	_	_	_	_	_	_	the workpiece and using them in synchronization to machine the workpiece (balance cutting). In addition, since the workpiece is machined by two tools, the machining
and part systems any activation and calling for the same spireds using for the same spireds using the same spired using the same spired using the same spired using the same spired using spired to the same spired using spi		_	_	_	_		_				For a machine with multiple part systems, the common variables and tool
The factor of portions through the factor of the common of CPT (1) for any interest part system. The factor of the common of CPT (1) for any interest part system, the factor of the common of CPT (1) for any interest part system. The factor common of CPT (1) for any interest part system is not to common of CPT (1) for any interest part system in the common of CPT (1) for any interest part system interest part system interes				_							
system. This has two commends: the commend citiz 1, for a minutaneously of the commend in multiple parts in review in a front part of systems or given and multiple thread by two part systems, which is shown as in the given and multiple thread by two part systems, which is shown as "two part systems and subserved thread by two part systems, which is shown as "two part systems in systems and subserved thread by two part systems in such part systems in part systems and part system	_	_	_	_	_	_	_	_	_	_	This function performs synchronous thread cutting for the same spindle using the 1st and 2nd part systems.
O O O O O O O O O O O O O O O O O O O	_	_	_	_	_	_	_	_	_	_	This function performs thread outting for the same spinclle in the different part system. This has two commands; the command (G76.1) for simultaneously outting threads in multiple places, which is known as "multi-part system simultaneous thread outting cycle I", and the command (G76.2) for simultaneously outting a thread by two part systems, which is known as "two-part system simultaneous
Programment of the control of the co											Separate programs, used in each part system, can be managed under a common
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□											name in a multi-part system.
Overrido carch be applied to dwell time and miscellaneous function firsh well in a final miscellaneous function firsh well in a final miscellaneous function firsh well in a final miscellaneous function firsh well in the multiple machining programs are operated with overrido. Sprichmonization among part systems and Seefacts change are tumed OFF in part of a machining program to eliminate a synchronization of verelotion and the synchronization in testion among part of a machining program to eliminate a synchronization of verelotion that the control of the synchronization relation among the systems with the buy part system for the protein post part systems with the protein operation passe or refeat whether well-are systems with the protein passes or refeat whether systems of part systems the protein passes or refeat the well-are systems passes on the systems with the protein operating part system passes or passes and passes	_	_	_	_	_	_	_	_	_	_	systems when two or more part systems are operated in the multi-part system. When one part system has been stopped by single block stop, the other part
Synchronization among part systems and feedate change are turned OFF in part of a machining program to eliminate a synchronization relation among part systems and programs to eliminate a synchronization relation among part systems play in part by common and part systems and part systems part the part system of the project operation pause or feedate variation in only some of part systems with the cycle operation pause or feedate variation in only some of part systems with the part system part system part system or part of the part system for the part system part system part systems or the part system part system part systems and part systems and part systems part systems part systems part systems and part systems and part systems part sy	_	_	_	_	_	_	_	_	_	_	Override can be applied to dwell time and miscellaneous function finish wait time of all part systems. The synchronization among part systems can be maintained when the multiple machining programs are operated with override.
A A A — — — — — — — — — — system). An audillary axis machining program can be controlled in the sub part system. When audillary axis machining program can be controlled in the sub part system. Using sub part system (sub part system). This function activates and operates any non-operating part system (sub part system) in the multi-part system. Using sub part system senables parallel operates system) in the multi-part system. Using sub part system and a program called with part system control III (G1144). O O O O O O O O O O D The parameters set from the display can be changed using machining program on the part system control III (G1144). The value of the workpiece coordinate systems selected can be set or change using program on the part system on the part sys	_	_	_	_	_	_	_	_	_	-	Synchronization among part systems and feedrate change are turned OFF in a part of a machining program to eliminate a synchronization relation among part systems by single block operation with part systems synchronized or variation of a machining program feedrate by dry run. This function is effective mainly in blocking the cycle operation pause or feedrate variation in only some of part systems when
This function activates and operates any non-operating part system (sub. part systems enables parallel operatives of the multi-part system control II (G144). The parameters set from the display can be changed using machining program. The value of the workplece coordinate systems selected can be set or change of the value of the workplece coordinate systems selected can be set or change. The value of the workplece coordinate systems selected can be set or change of the value of the workplece coordinate systems selected can be set or change using program commands. The tool compressation amounts, that are set from display can be input using program commands. The tool compressation amounts, that are set from display can be input using program commands. The tool compressation amounts, that are set from display can be input using program commands. The tool compressation amounts, that are set from display can be input using program commands. The tool compressation amounts, that are set from display can be input using program commands. The tool compressation amounts, that are set from the reachining program. No internal data can be set with the machining program. The set value can be checked and the machining system variables. The R-Nexi setup parameter can be set from the machining program. The set value can be checked and the machining surface can be selected on the set screen for the parameter set from the machining program. The set value can be checked and the machining program. This function enables the next block to start (overlap) without waiting for poet (G00) or reference position return (G28PG30). Consequently, cycle time of machining can be reduced. This function enables the next block to start (overlap) without waiting for poet (G00) or reference position return (G28PG30). Consequently, cycle time of machining can be reduced.	Δ	Δ	Δ	Δ	_	_	_	_	_	_	This function activates and operates any non-operating part system (sub part system) in the multi-part system. An auxiliary axis machining program can be controlled in the sub part system by commanding Sub part system control I (G122) from the parin part system.
O O O O O O O O O O O O O O O O O O O	_	_	_	_	_	_	_	_	_	_	This function activates and operates any non-operating part system (sub part system) in the multi-part system. Using sub part systems enables parallel operation between an operating program in main part system and a program called with Sub
The value of the workpiece coordinate systems selected can be set or chang using program commands. The tool compensation amounts, that are set from display can be input using program commands. The value of the workpiece coordinate systems selected can be set or chang using program commands. The tool compensation amounts, that are set from display can be input using program commands. The Nalise group present screen and workpiece shape data of \$10 old program check can be set with the machining program. No internal data can be read/written by specifying the section number, sub-so number, part system number and axis number using system variables. The P-Navi setup parameter can be set from the machining program. The set value can be checked and the machining surface can be selected on the set screen for the parameter set from the machining program. The P-Navi setup parameter can be set from the machining surface can be selected on the set screen for the parameter set from the machining program. The P-Navi setup parameter can be set from the machining program. The set value can be checked and the machining surface can be selected on the set screen for the parameter set from the machining program. The P-Navi setup parameter set from the machining program. The P-Navi setup parameter can be set from the machining surface can be selected on the set screen for the parameter set from the machining can be reduced. This function enables the next block to start (overlap) without waiting for posit (600) or reference position return (628/G30). Consequently, cycle time of machining can be reduced. To prevent machining surface distortion due to increase in the cutting load who cutting comes, this function automatically applies an override on the cutting feedrate so that the cutting amount is not increase in the cutting load who cutting comes, this function automatically applies an override on the cutting feedrate so that the cutting amount is not increase in the cutting load who cutting comes, this function decelerates											
O O O O O O O O O O O O O O O O O O O	0	0	0	0	0	0	0	0	0	0	The parameters set from the display can be changed using machining programs. The value of the workpiece coordinate systems selected can be set or changed
O O O O O O O O O O O O O O O O O O O	0	0	0	0	0	0	0	0	0	0	using program commands. The tool compensation amounts, that are set from the display can be input using program commands.
O O O O O O O O O O O O O O O O O O O	0	0	0	0	0	0	0	0	0	0	Tool shape data on the tool management screen and workpiece shape data of the 3D solid program check can be set with the machining program.
Δ Δ Δ Δ Ο Ο Ο — — — value can be checked and the machining surface can be selected on the sett. screen for the parameter set from the machining program. O O O O O O O O O O O O O O O O O O O	0	0	0	0	0	0	0	0	0	0	NC internal data can be read/written by specifying the section number, sub-section number, part system number and axis number using system variables.
O O O O O O O O O O O O O O O O O O O	Δ	Δ	Δ	Δ	0	0	_	_	_	_	The R-Navi setup parameter can be set from the machining program. The setting value can be checked and the machining surface can be selected on the setup screen for the parameter set from the machining program.
Control modes required for tapping. When a cutting mode command is issued, the CNC system is set to the cuttin mode that enables a smoothly cut surface. This function enables the next block to start (overlap) without waiting for positing or position return (G28/G30), Consequently, cycle time of machining can be reduced. To prevent machining surface distortion due to increase in the cutting load who cutting corners, this function automatically applies an override on the cutting feedrate so that the cutting amount is not increased for a set time at the corner of the cutting amount is not increased for a set time at the corner of the cutting forms of the cutting amount is not increased for a set time at the corner of the cutting amount is not increased for a set time at the corner of the cutting forms of the cutting forms of the cutting forms of the cutting amount is not increased for a set time at the corner of the cutting forms of the cu											
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □											control modes required for tapping.
△ △ △ △ ○ ○ ○ ─ ─ ─ △ (G00) or reference position return (G28/G30). Consequently, cycle time of machining can be reduced. To prevent machining surface distortion due to increase in the cutting load who cutting corners, this function automatically applies an override on the cutting feedrate so that the cutting amount is not increased for a set time at the corners of the cutting amount is not increased for a set time at the corners of the cutting amount is not increased for a set time at the corner of the cutting amount is not increased for a set time at the corner of the cutting amount is not increased for a set time at the corner of the cutting amount is not increased for a set time at the corner of the cutting amount is not increased for a set time at the corner of the cutting amount is not increased for a set time at the corner of the cutting amount is not increased for a set time at the corner of the cutting corners, this function decelerates and stops a motor before executing the next block, which reduces the impact on the machine caused by a rapid change of feedr	0	0	0	0	0	0	0	0	0	0	
O O O O O O O O O O O O O O O O O O O	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ	
O O O O O O O O This function decelerates and stops a motor before executing the next block, which reduces the impact on the machine caused by a rapid change of feedr	0	0	0	0	0	0	0	0	0	0	To prevent machining surface distortion due to increase in the cutting load when cutting corners, this function automatically applies an override on the cutting feedrate so that the cutting amount is not increased for a set time at the corner.
O O O O O O O O O This function decelerates and stops a motor before executing the next block, which reduces the impact on the machine caused by a rapid change of feedr	0	0	0	0	0	0	0	0	0	0	
		0		0	0			0			This function decelerates and stops a motor before executing the next block, which reduces the impact on the machine caused by a rapid change of feedrate.
O O O O O O O O O This function is effective to reduce the extension of cycle time for the cutting a											This function is effective to reduce the extension of cycle time for the cutting at the

 $\hbox{OStandard} \ \ \triangle \hbox{Optional} \ \ \square \hbox{Selection} \ \ \hbox{Specifications of separated-type display are classified with "Windows-based" and non-Windows-based}$

-	rcu II	uail	Displacement Specifications of separateo-ty	po display									
				Ma	00W	Ma	00S	Lathe :	system M	80	F	80	C80
			class	M850W	M830W	M850S	M830S	_	M80	M80	E80	E80	_
3	3 Hic	gh-si	peed and high-accuracy functions [kBPM: k Block per Minute]						TypeA	TypeB	TypeA	TypeB	
Г	1	Hi	gh-speed machining mode										
	2	2	High-speed machining mode I (G05P1) maximum [kBPM] High-speed machining mode II (G05P2) maximum [kBPM] gh-accuracy control	△33.7 △168	△33.7 △168	∆33.7 ∆168	△33.7 △168	O33.7 O67.5	O33.7 O67.5	_	_	_	△33.7 △67.5
		1	High-accuracy control (G61.1 / G08)	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
		2	Multi-part system simultaneous high-accuracy control	Δ	Δ	Δ	Δ	_	_	_	_	_	_
		3	SSS control	Δ	Δ	Δ	Δ	0	0	0	*	_*	_
		4	Tolerance control	Δ	Δ	Δ	Δ	0	0	0	0	0	_
		5	Variable-acceleration pre-interpolation acceleration / deceleration	_	_	_	_	_	_	_	_	_	_
		6	High-accuracy acceleration / deceleration time constant extension	_	_	_	_	_	_	_	_	_	_
		7	Axis-specific acceleration tolerance control	Δ	Δ	Δ	Δ	_	_	_	_	_	_
	3	_	gh-speed high-accuracy control	4.07.5	1 407.5	4.07.5	1 407.5	000.7	000.7	I		1	400.7
		2	High-speed high-accuracy control I (G05.1Q1) maximum [kBPM] High-speed high-accuracy control II (G05P10000) maximum [kBPM]	△67.5 △168	△67.5 △168	△67.5 △168	△67.5 △168	O33.7 O67.5	O33.7 O67.5	<u> </u>	_	_	△33.7 △67.5
		3	High-speed high-accuracy control III (G05P20000) maximum [kBPM]	_	_	_	_	_	-	_	_	_	_
		4	Smooth fairing	_	_	_	_	_	_	_	_	_	_
	4	М	achining condition selection I	0	0	0	0	0	0	_	_	_	0
	5		rect command mode	Δ	Δ	Δ	Δ	_	_		_	_	_
4	\top	T	amming support functions			_				l			
	3		ayback teractive cycle insertion	Δ	Δ	Δ	Δ	_	0	0	0	0	
	_												
	5	H	mple programming (NAVI MILL / LATHE) code guidance	Δ 0	Δ 0	Δ 0	Δ 0	0	0	0	0	0	0
	7		KF data input	Δ	Δ	Δ	Δ	0	0	_	_	_	_
3 1	100	hino	accuracy compensation										
			accuracy compensation										
Γ	1	Т	acklash compensation	0	0	0	0	0	0	0	0	0	0
	2	М	emory-type pitch error compensation [sets]	032	032	032	032	016	016	016	016	016	010
	3	М	emory-type relative position error compensation	0	0	0	0	0	0	0	0	0	0
	4		ternal machine coordinate system compensation	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
	5	\vdash	rcular radius error compensation	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ
ŀ	6	Ba	all screw thermal expansion compensation	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
	7	R	otation center error compensation	Δ	Δ	Δ	Δ	_	_	_	_	_	_
	8		osition-dependent gradually increasing-type backlash impensation	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ
	9	Bi	directional pitch error compensation	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ
	10	C.	volic error compensation	Δ	Δ	Δ	Δ	0	0	0	_	_	_
	11	Sp	patial error compensation	_	_	_	_	_	_	_	_	_	_
	12	Ва	acklash compensation II	_		_					_		_

MSSOW				Mad	chining c	enter sys	tem					
MGSOV MGSOS MGGOS MGGO	M8	oow	M8			М	80			C80	General explanation	
A	M850W	M830W	M850S	M830S	_					_	deneral explanation	
A 188				l		Турен	Турев	Турен	Турев			
A 188	4.00.7	1 400 7	4.00.7	1 400 7	000.7	000.7	0400			4.00.7		
△ △ △ △ A A A O O O A								_	_			
A	Δ	Δ	Δ	Δ	0	0	0	0	_	Δ	function is useful for machining which needs to make an edge at a corner or	
A A A A A O											High-accuracy control and high-speed machining mode are available respectively	
A A A A A A A A A A A A A A A A A A A	Δ	Δ	Δ	Δ	0	0	_	-	_	Δ	speed machining mode (including High-speed high-accuracy control I/I/III) are available only in part systems which are limited by the parameter. * Up to 2 part systems	
A A A A A A A A A A A A A A A A A A A	Δ	Δ	Δ	Δ	0	0	0	_*	_	Δ	instead of just the angle between the blocks. Thus, optimum speed control that is not adversely affected by minute steps or waviness is possible. This enables machining with a fewer scratches and streaks on the cutting surface compared to the normal high-accuracy control function. Multiple part systems simultaneous high-accuracy function is required to conduct the SSS control in the second or following part systems. * eSSS (There are limitations on the setting of some parameters.)	
A A A A A A A A A A A A A A A A A A A	Δ	Δ	Δ	Δ	0	0	0	0	_	Δ		
△ △ △ △ —	Δ	Δ	Δ	Δ	_	_	_	_	_	_	setting diverse acceleration to each axis. Therefore, the acceleration for the axis with high responsiveness can be larger than before so that cycle time can be	
ABF.5	Δ	Δ	Δ	Δ	_	_	_	_	_	_	This extends the upper limit of cutting feed time constant from 5,000[ms] to 30,000[ms] for acceleration/deceleration before interpolation.	
A	Δ	Δ	Δ	Δ	_	_	_	_	_	_	The acceleration to be generated at a seam between blocks is evaluated for each axis to control deceleration so that the seam is passed at the optimum speed. This enables highly accurate edge machining.	
A 270 A 270 A 270 O 105	△67.5	△67.5	△67.5	△67.5	033.7	033.7	033.7	_	I –	△33.7		
A 270 A270 A270 A270 D135 D135 D135 D135 D135 D135 D135 D135	△168	△168	△168	△168	067.5	067.5	067.5	_	_	△67.5	decreasing the cycle time of machining dies with free curves. This function is also	
A A A O O O O O O O O O O O O O O O O O	△270	△270	△270	△270	0135	0135	_	_	_	△135	error from inner route of curved shape because the high-accuracy control mode is turned ON automatically.	
O O O O O O O O O O O O O O O O O O O	Δ	Δ	Δ	Δ	0	0	_	_	_	Δ	program. This function is useful when executing a fine segment program to machine smoothly at low speed or a rough machining program with long segment	
—	0	0	0	0	0	0	0	0	_	0	high-accuracy control can be configured in advance for each machining application (such as part machining or die machining) or machining process (such as rough or	
A A A A O O O O O O O O O O O O O O O O	_	_	_	_	_	_	_	_	_	_	By reducing the load applied during the NC program analysis and interpolation to the minimum possible level, the machining programs expressed in fine segments	
A A A A O O O O O O O O O O O O O O O O									I		This function enables creation of a program while proceeding with sample	
Dept. Dept									_		machining by manual (handle or job) feed or mechanical handle feed. This function enables to interactively insert a cycle to assist in the machining and	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □											by editing data in an interactive window.	
O O O O O O O O O O O O O O O O O O O	Δ	Δ	Δ	Δ	0	0	0	0	0		LATHE (for lathe system).	
A A A O O O — — — This function allows you to import a DXF drawing file from an external I/O device through DXF drawing file from an external I/O device through DXF detail input window, extext the figure deement data from the drawing. Extracted data can be set as arbitrary stape data or as hole position data to the cycle being edited using the interactive cycle insertion function. O O O O O O O O O O O O O O O O O O	0	0	0	0	0	0	0	0	0	0	of the commanded format for the G code currently under editing. This is used	
O32 O32 O32 O32 O36 O16 O16 O16 O16 O16 O16 O10 O10 Machine accuracy can be improved by compensating the errors in the screw pitch intervals among the mechanical errors (production error, wear, etc.) of the feed screws. O O O O O O O O O O O Machine accuracy can be improved by compensating the relative error between machine axes, such as a production error or aging. The coordinate system can be shifted by inputting a compensation amount from the PLC. This compensation amount will not appear on the counters (all counters including machine position). A A A O O O O O O O Machine accuracy can be improved by compensating the relative error between machine axes, such as a production error or aging. The coordinate system can be shifted by inputting a compensation amount from the PLC. This compensation amount will not appear on the counters (all counters including machine position). A A A A O O O O O O Machine accuracy machine with a rotary axis, there may be a case where the actual rotation center deviates from the point where may be a case where the actual rotation center deviates from the point where the machine movement direction is reversed can be according to the distance from the point where the machine movement direction is reversed can be compensated by the production of the distance from the point where the machine movement direction is reversed can be compensated by outperlating the varieties of the distance from the point where the machine movement direction is reversed can be compensated by outperlating to the distance from the point where the machine movement direction is reversed can be compensated by outperlating the active freedom. A A A A O O O O O O O O O O O O O O O	Δ	Δ	Δ	Δ	0	0	_	_	_	_	This function allows you to import a DXF drawing file from an external I/O device through DXF data input window, extract the figure element data from the drawing. Extracted data can be set as arbitrary shape data or as hole position data to the	
O32 O32 O32 O32 O36 O16 O16 O16 O16 O16 O16 O10 O10 Machine accuracy can be improved by compensating the errors in the screw pitch intervals among the mechanical errors (production error, wear, etc.) of the feed screws. O O O O O O O O O O O Machine accuracy can be improved by compensating the relative error between machine axes, such as a production error or aging. The coordinate system can be shifted by inputting a compensation amount from the PLC. This compensation amount will not appear on the counters (all counters including machine position). A A A O O O O O O O Machine accuracy can be improved by compensating the relative error between machine axes, such as a production error or aging. The coordinate system can be shifted by inputting a compensation amount from the PLC. This compensation amount will not appear on the counters (all counters including machine position). A A A A O O O O O O Machine accuracy machine with a rotary axis, there may be a case where the actual rotation center deviates from the point where may be a case where the actual rotation center deviates from the point where the machine movement direction is reversed can be according to the distance from the point where the machine movement direction is reversed can be compensated by the production of the distance from the point where the machine movement direction is reversed can be compensated by outperlating the varieties of the distance from the point where the machine movement direction is reversed can be compensated by outperlating to the distance from the point where the machine movement direction is reversed can be compensated by outperlating the active freedom. A A A A O O O O O O O O O O O O O O O												
O32 O32 O32 O36 O16 O16 O16 O16 O16 O16 O16 O10 Interview of the provided by compensating the errors in the screw pitch intervise among the mechanical errors (production errors, wear, etc.) of the feed sorew. O O O O O O O O O O O O O O O O O O O	0	0	0	0	0	0	0	0	0	0		
Screws. Screws. Screws. Machine accuracy can be improved by compensating the relative error between machine axes, such as a production error or aging. The coordinate system can be shifted by inputting a compensation amount from the PLC. This compensation amount will not appear on the counters (all counters including machine position). A A A A O O O O O O A With commands designated during arc cutting, this function compensates movement toward the inside of the arcs caused by a factor such as service delay. A A A A O O O O O A This compensation amount will not appear on the counters (all counters including machine position). A A A A O O O O O A This compensation amount will not appear on the counters (all counters including machine position). A A A A O O O O O A This compensation amount will not appear on the counters (all counters including machine) position). A A A A O O O O O O A This compensation amount will not appear on the service of the case of the case where the actual rotation centre creation are set of the counters and the compensation amount according to the distance from the programmed rotation centers (in other words, "machine rotation centre error" may be observed.) Higher accuracy machining can be realized by compensating this error. With this function, the gradually increasing-type lost motion which depends on the distance from the point where the machine movement direction is reversed can be compensated by controlling the variation of backlash compensation amount according to the distance from the direction reversal point. A A A A O O O O O O O O O O O O O O O	032	032	032	032	016	016	016	016	016	010	Machine accuracy can be improved by compensating the errors in the screw pitch	
A A A O O O O O A The coordinate system can be shifted by inputting a compensation amount from the PLC. This compensation amount will not appear on the counters (all counters including machine position). A A A A O O O O O O O Mith commands designated during arc cutting, this function compensates movement toward the inside of the arcs caused by a factor such as servi delay. This compensation the inside of the arcs caused by a ball screw's thermal expansion, etc. using the values set by the PLC. In a machine with a rotary axis, there may be a case where the actual rotation center deviates from the programmed rotation center. (In other words, "machine in rotation center deviates from the programmed rotation center deviates from the programmed rotation center deviates from the programmed rotation center in the programmed rotation center deviates from the programmed rotation center (In other words, "machine rotation center deviates from the programmed rotation center in the programmed rotation center deviates from the programmed rotation center in the programmed rotation center (In other words, "machine rotation center deviates from the programmed rotation center (In other words, "machine rotation center deviates from the programmed rotation center (In other words, "machine rotation center deviates from the programmed rotation center (In other words, "machine rotation of the programmed rotation center deviates from the programmed rotation center (In other words, "machine rotation of the words," machine rotation of the security of the programmed rotation center from a position center from a position of the compensation amount when moving in the positive and negative direction. A A A A O O O O O O O O O O O O O O O											screws.	
Including machine position Nith commands designated during arc cutting, this function compensates movement toward the inside of the arcs caused by a factor such as servo delay. A											The coordinate system can be shifted by inputting a compensation amount from	
A A A A O O O O O O O O O O O O O O O O											including machine position).	
A A A A O O O O O O O O O O O O O O O O	Δ	Δ	Δ	Δ					_		movement toward the inside of the arcs caused by a factor such as servo delay.	
Δ Δ Δ Δ Ο Ο Ο Ο Ο Δ Glidection by setting the programmed rotation center. (In other words, "machine rotation center error" may be observed.) Higher accuracy machining can be realized by compensating this error. With this function, the gradually increasing-type lost motion which depends on the distance from the point where the machine movement direction is reversed can be compensated by controlling the variation of backlash compensation amount according to the distance from the direction reversed point. Bidirectional pitch error compensation function is used to compensate the pitch error in each direction by setting the pitch error compensation amount when moving in the positive and negative direction. Δ Δ Δ Δ Ο Ο Ο Η Η Επιστικό του συσφενατικό του setting the pitch error some certain cyclic errors, this function compensates a series of cyclic errors by setting the compensation amount for a single cycle. This function can compensate for three-dimensional errors of a machine tool due to its linear and rotary axes. This measures the spatial errors with a measuring device, inputs the measurement results to the NC to make an error data file and adds the calculated compensation. For a machine under semi-closed loop control, this function restrains quadrant	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	etc. using the values set by the PLC.	
Δ Δ	Δ	Δ	Δ	Δ	_	_	_	_	_	_	center deviates from the programmed rotation center. (In other words, "machine rotation center error" may be observed.) Higher accuracy machining can be	
Δ Δ Δ Ο Ο Ο — — Δ Bidirectional pitch error compensation function is used to compensate the pitch error in each direction by setting the pitch error compensation amount when moving in the positive and negative direction. Δ Δ Δ Ο Ο Ο — — When the machine operation induces certain cyclic errors, this function compensates a series of cyclic errors by setting the compensation amount for a single cycle. This function can compensate for three-dimensional errors of a machine tool due to its linear and rotary axes. This measures the spatial errors with a measuring device, inputs the measurement results to the NC to make an error data file and adds the calculated compensation. Δ Δ Δ Δ Γ Γ Γ For a machine under semi-closed loop control, this function restrains quadrant	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	distance from the point where the machine movement direction is reversed can be compensated by controlling the variation of backlash compensation amount	
Δ Δ Δ Ο Ο Ο Ο — — compensates a series of cyclic errors by setting the compensation amount for a single cycle. This function can compensate for three-dimensional errors of a machine tool due to its linear and rotary axes. This measures the spatial errors with a measuring device, inputs the measurement results to the NC to make an error data file and adds the calculated compensation amount of the linear and rotary axes to the drive command position to perform the compensation. A A A A A A A A A A A A A A A A A A A	Δ	Δ	Δ	Δ	0	0	0			Δ	Bidirectional pitch error compensation function is used to compensate the pitch error in each direction by setting the pitch error compensation amount when	
This function can compensate for three-dimensional errors of a machine tool due to its linear and rotary axes. This measures the spatial errors with a measuring device, inputs the measurement results to the NC to make an error data file and adds the calculated compensation amount of the linear and rotary axes to the drive command position to perform the compensation. For a machine under semi-closed loop control, this function restrains quadrant	Δ	Δ	Δ	Δ	0	0	0	_	_	_	When the machine operation induces certain cyclic errors, this function compensates a series of cyclic errors by setting the compensation amount for a	
A A A C C C C C C C C C C C C C C C C C	Δ	Δ	Δ	Δ	_	_	_	_	_	_	This function can compensate for three-dimensional errors of a machine tool due to its linear and rotary axes. This measures the spatial errors with a measuring device, inputs the measurement results to the NC to make an error data file and adds the calculated compensation amount of the linear and rotary axes to the driv	
	Δ	Δ	Δ	Δ	0	0	0	0	0	_		

 $\hbox{OStandard} \ \ \triangle \hbox{Optional} \ \ \square \hbox{Selection} \ \ \hbox{Specifications of separated-type display are classified with "Windows-based" and non-Windows-based}$

							1 -41					
		alasa	M80	oow	M8	00S	Lathe s M80W		80	E	80	C80
		class	M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_
2 Dy	yn	namic accuracy compensation						.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,	.,,,,,,,,	.,,,,,,	
1		Smooth high-gain (SHG) control	0	0	0	0	0	0	0	0	0	0
2		Dual feedback	0	0	0	0	0	0	0	0	0	0
3	3	Lost motion compensation	0	0	0	0	0	0	0	0	0	0
4		OMR II (Backlash with filter)	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ
6	ò	OMR-FF	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
7		Distance-coded reference position detection	Δ	Δ	Δ	Δ	0	0	0	_	_	_
10		Cogging torque compensation	Δ	Δ	Δ	Δ	0	0	0	_		_
		nation support functions asurement										
1		Skip										
		1 Skip	0	0	0	0	0	0	0	0	0	0
	1	2 Multiple-step skip	0	0	0	0	0	0	0	0	0	0
		4 PLC skip	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
	1	5 Speed change skip	Δ	Δ	Δ	Δ	_	_	_	_	_	_
	t	6 Torque limitation skip	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
2		Automatic tool length measurement	0	0	0	0	0	0	0	0	0	0
3	3	Manual tool length measurement 1	0	0	0	0	0	0	0	0	0	0
4		Manual tool length measurement 2	0	0	0	0	0	0	0	0	0	0
5	,	Workpiece coordinate offset measurement	0	0	0	0	0	0	0	0	0	0
6	6	Workpiece position measurement	_	_	_	_	_	_	_	_	_	_
7		Rotation measurement	_	_	_	_	_	_	_	_	_	_
8	3	Rotation center error measurement	_	_	_	_	_	_	_	_	_	_
9)	Workpiece installation error measurement	_	_	_	_	_	_	_	_	_	_
		I life management										
1	\top	Tool life management	_				_					
	t	1 Tool life management I 2 Tool life management II	0	0	0	0	0	0	0	0	0	0
	ŀ									<u> </u>		
2		3 Tool life management III Number of tool life management sets	_			_	_			_	_	
-	Ţ	99 sets	_			_	_		0	0	0	_
		128 sets	0	0	0	0						0
	⊢	200 sets	_			_	_	0	_			_
	-	256 sets 400 sets	Δ	Δ	Δ	Δ	0			_	<u> </u>	Δ
	-	999 sets	Δ	Δ	Δ	Δ	_	_	_	_	_	_
3		Tool life management set allocation to part systems	0	0	0	0	0	0	0	_	_	0
3 Otl	т											
1	1	Programmable current limitation	0	0	0	0	0	0	0	0	0	0
	-1	Auto power OFF	0	0	0	0	0	0	0	0	0	_

			Mad	chining c	enter sys	tem				
M80	00W	M8	00S	M80W		80		80	C80	General explanation
M850W	M830W	M850S	M830S	_	M80 TypeA	M80	E80	E80	_	deneral explanation
					турен	TypeB	TypeA	TypeB		
0	0	0	0	0	0	0	0	0	0	This is a high-response and stable position control method using the servo system. SHG control realizes an approximately three-fold position loop gain compared to the conventional control method.
0	0	0	0	0	0	0	0	0	0	Use position feedback with a motor-side encorder in ranges with high acceleration to enable stable control. In ranges with low acceleration, use position feedback with the machine-side encorder (scale). This will make it possible to increase the position loop gain. A machine-side encorder (scale) is separately required.
0	0	0	0	0	0	0	0	0	0	This function compensates the error in protrusion shapes caused by lost motion at the arc quadrant changeover section during circular cutting. The OMR (Optimal Machine Response) control function estimates the machine or
Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	The OWN (Quint walchille heapt) residently intraction estimates the metalline or motor model (moment of inertia, clone friction, viscosity coefficient, etc.) that can cause a path error (deviation of the actual tool path from the programmed path). High-accuracy machining is achieved by carrying out feed forward control based on that model. This allows error cased by quadrant profrusions during circular interpolation or quadrants on the inner side of the path to be greatly reduced. OMR-II is a function that focuses on the quadrant profrusions, and improves the path error with this. Quadrant path compensation is included in OMR-II.
Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	OMR-FF control enables fine control by generating feed forward inside the drive unit and can realize the strict feedback control to the program command than the conventional high-speed accuracy control.
Δ	Δ	Δ	Δ	0	0	0	_	_	_	This is a function where a distance-coded reference scale is used to establish the reference point in the relative position detection system.
Δ	Δ	Δ	Δ	0	0	0	_	_	_	This function compensates the torque ripple (cogging torque).
0	0	0	0	0	0	0	0	0	0	When the external skip signal is input during linear interpolation using the G31 command, machine feeding is stopped immediately and the remaining distance is discarded to execute the commands in the next block.
0	0	0	0	0	0	0	0	0	0	This function realizes skipping by designating a combination of skip signals for each skip command.
Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	This function enables skip operations to be performed by signals which are input
Δ	Δ	Δ	Δ	_						from the user PLC. This function is used to change the feed rate or to stop the movement by inputting
Δ	Δ	Δ	Δ							the skip signal during the linear interpolation. Axis movement is performed in the torque limited status, and the axis movement
Δ	Δ	Δ	Δ	0	0	0	0	0	_	command is suspended to proceed to the next block when the current command value reaches the designated torque skip value and the torque skip turns ON. This function moves the tool in the direction of the tool measurement position by
0	0	0	0	0	0	0	0	0	0	the commanded value between the measurement start position and measurement position. It stops the tool as soon as it reaches the sensor and calculates the difference between the coordinates where the tool has stopped and the command coordinates. It registers this difference as the tool length compensation amount for that tool.
0	0	0	0	0	0	0	0	0	0	Simple measurement of the tool length is done without a sensor.
0	0	0	0	0	0	0	0	0	0	[M system] When the tool is positioned at the reference position, this function measures the distance from the reference position to the tool tip and registered it as the tool length compensation amount. [L system] A device with a built-in touch sensor is used. Simply by causing the tool nose to touch the touch sensor in manual feed, the tool compensation amount car be calculated and stored in tool compensation amount memory.
_	_	_	_	_	_	_	_	_	-	The external workpiece coordinate offset data for the Z axis can be set by cutting the workpiece face by means of manual operations and inputting the workpiece measurement signal.
0	0	0	0	0	0	0	0	0	0	The workpiece position measurement function is used to measure each axis' coordinate by installing a sensor on the spindle and the sensor contacting the workpiece with the manual feed or handle feed. The surface, hole center and width center coordinates are calculated from the measured coordinates, and those calculated results are set in the workpiece coordinate offset.
0	0	0	0	0	0	0	_	_	0	The offset of the rotary coordinate system (rotation center and rotation angle) is measured, and the results are set to the workpiece coordinate system offset (rotation center) and the parameters.
Δ	Δ	Δ	Δ	_	_	_	_	_		This function executes automatic measurement with the touch sensor on the reference sphere to calculate the rotation center error compensation amount.
Δ		Δ		_	_	_	_		_	This function executes automatic measurement with the touch sensor to calculate the workpiece installation error compensation amount.
0	0	0	0	0	0	0	0	0	0	The tool usage is monitored by accumulating each tool's usage time or the frequency of use.
0	0	0	0	0	0	0	0	0	0	requency or use. [M system] A spare tool change function is added to the tool life management I. [L system] The life of each tool (time and frequency) is controlled, and when the life is reached, a spare tool of the same type is selected from the same group.
0	0	0	0	0	0	0	0	0	0	The tool usage is monitored by accumulating each tool's usage time and the frequency of use. This function is not controlled by the group No.
_	l =		l –			l –		l –	_	
_									_	
0	0	0	0	0	0	0	0	0	0	The max. sets of tools available for tool life management
Δ	Δ	Δ	Δ	<u> </u>	_	_	_	<u> </u>		-
Δ	Δ	Δ	Δ	_	_	_	_	_	_	1
0	0	0	0	_	_	_	_	_	_	*Variable number of management tools The number of tool life management tools can be set per part system. There are two types of the allocation: "Arbitrary allocation" which allocates the number of tool life management tools to each part system arbitrarily and "Fixed allocation" which automatically allocates the number of tool life management tools to each part system equally, and the type can be selected using the parameter.
0	0	0	0	0	0	0	0	0	0	This function allows the current limit value of the NC axis to be changed to a
0	0	0	0	0	0	0	0	0	_	desired value in the program, and is used for the workpiece stopper, etc. Auto power OFF function notifies that the control unit's power can be turned OFF after shutting the display unit down by entering "automatic power OFF request"
										signal from user PLC to NC.

Sta	an	dard △Optional □Selection Specifications of separated-ty	pe display a	are classifie	d with "Win	dows-based	l" and non-\	Windows-b	ased			
							Lathe s					
		class		00W		00S	M80W	M80	80 M80	E80	B0 E80	C80
			M850W	M830W	M850S	M830S	_	ТуреА	ТуреВ	ТуреА	ТуреВ	
	4	Load monitoring I	Δ	Δ	Δ	Δ	0	0	_	_	_	_
	5	Power ON / OFF sequence	0/—	0/—	_	_	0/—	_	_	_	_	_
	6	PLC axis current limit	_	_	_	_	_	_	_	_	_	0
$\overline{}$	7	Direct robot control ty and maintenance										
_	_	fety switches										
	1	Emergency stop	0	0	0	0	0	0	0	0	0	0
\Box	ᆫ	Data protection key	0	0	0	0	0	0	0	0	0	0
2	П	splay for ensuring safety		l l								
	1	NC warning	0	0	0	0	0	0	0	0	0	0
	2	NC alarm	0	0	0	0	0	0	0	0	0	0
	3	Operation stop cause	0	0	0	0	0	0	0	0	0	0
	4	Emergency stop cause	0	0	0	0	0	0	0	0	0	0
		Thermal detection	0	0	0	0	0	0	0	0	0	0
		Battery alarm / warning otection	0	0	0	0	0	0	0	0	0	0
	1	Stroke end (Over travel)	0	0	0	0	0	0	0	0	0	0
	2											
	_	1 Stored stroke limit I/II	0	0	0	0	0	0	0	0	0	0
		Stored stroke limit IB Stored stroke limit IIB	Δ	Δ	Δ	Δ	0	0	0		_	Δ
		4 Stored stroke limit IC	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ
	3	Stroke check before travel	Δ	Δ	Δ	Δ	0	0	0	_	_	_
	4	Chuck / Tailstock barrier check	0	0	0	0	0	0	0	0	0	0
	5	Interlock	0	0	0	0	0	0	0	0	0	0
	6	External deceleration	0	0	0	0	0	0	0	0	0	0
	7	Interference check III	Δ	Δ	Δ	Δ	_	_	_	_	_	_
	8	3D machine interference check	_	_	_	_	_	_	_	_	_	_
	9	Door interlock		l								
		1 Door interlock I	0	0	0	0	0	0	0	0	0	0
		2 Door interlock II	0	0	0	0	0	0	0	0	0	0
	10	Parameter lock	0	0	0	0	0	0	0	0	0	0
	11	Program protection (Edit lock B, C)	0	0	0	0	0	0	0	0	0	0
	12	Program display lock	0	0	0	0	0	0	0	0	0	0
	13	Data protection by user's level	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
	15	Vertical axis pull-up	0	0	0	0	0	0	0	0	0	0
	16	Machine group-based alarm stop	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ
	17	Interference check between part systems	0	0	0	0	0	0	_	_	_	_
	18	Spindle protection	0	0	0	0	0	0	0	_	_	_
4	Ma	intenance and troubleshooting										
	1	Operation history	0	0	0	0	0	0	0	0	0	0
	2	Data sampling	0	0	0	0	0	0	0	0	0	0
	_	NC data backup Servo tuning support	0	0	0	0	0	0	0	0	0	0
	_	1 NC Analyzer2 (Note 1)	0	0	0	0	0	0	0	0	0	0
	F											
	5	Automatic backup	0	0	0	0	0	0	0	0	0	O(GOT)

(Note 1) The software sold separately is necessary.

						1						
M80	οw	M8		hining c	enter sys	tem 80	F	80	C80			
	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_	General explanation		
Δ	Δ	Δ	Δ	0	О	- Турев	- Турен	- Турев	_	This function aims at detecting tool wear or degradation by detecting and monitoring the actual load (current value) on spindle and NC axes on a real time		
						_			_	basis. This function turns the power supply ON / OFF, synchronizing the NC control unit		
0/—	0/—	_	_	0/—			_	_	0	and the HMI screen. A current limit is available for the PLC axis as well as for the NC axis. This function		
_	_	_	_	_					_	can be used for actions such as stopper operation. This function enables a robot to be connected to and directly operated by an NC.		
0	0	0	0	0	0	0	0	0	0	All operations are stopped by the emergency stop signal input and, at the same time, the drive section is stopped and the movement of the machine is stopped.		
0	0	0	0	0	0	0	0	0	0	With the input from the user PLC, it is possible to prohibit the parameter setting or deletion, and the program edit from the setting and display unit.		
						I		I		Warnings are output by the CNC system. When one of these warnings occurs, a		
0	0	0	0	0	0	0	0	0	0	warning number is output to the PLC and a description of the warning appears on the screen. Operation can be continued without taking further action.		
0	0	0	0	0	0	0	0	0	0	When an alarm has occurred, an alarm number is output to the PLC, and a description of the alarm appears on the screen. Operation cannot be continued without taking remedial action.		
0	0	0	0	0	0	0	0	0	0	The stop cause of automatic operation is shown on the display. When the "EMG" (emergency stop) message is displayed in the operation status		
0	0	0	0	0	0	0	0	0	0	area of the display, the cause of the emergency stop can be confirmed.		
0	0	0	0	0	0	0	0	0	0	When overheating is detected in the control unit, an overheat signal is output at the same time as the alarm is displayed.		
0	0	0	0	0	0	0	0	0	0	When it is time to change the batteries, an alarm and warning are displayed.		
0	0	0	0	0	0	0	0	0	0	Limit switches and dogs are attached to the machine, and when a limit switch has kicked a dog, the movement of the machine is stopped by the signal input from the limit switch.		
0	0	0	0	0	0	0	0	0	0			
Δ	Δ	Δ	Δ	0	0	0	_		Δ	The areas where tool entry is prohibited can be set with parameters or program commands. There are multiple types of prohibitions according to the prohibited		
Δ	Δ	Δ	Δ	0	0	0	_		Δ	range and method.		
Δ	Δ	Δ	Δ	0	0	0	_	_	Δ	By commanding, from the program, the boundary for prohibiting machine entry as a coordinate position in the machine coordinate system, entry into the inner side of that boundary can be prohibited.		
_	_	_	_		_	_	_	_	_	By limiting the tool nose point movement range, this function prevents the tool from		
0	0	0	0	0	0	0	0	0	0	colliding with the chuck or tail stock because of a programming error. The machine movement will decelerate and stop as soon as the interlock signal, serving as the external input, is turned ON. When the interlock signal is turned OFF,		
0	0	0	0	0	0	0	0	0	0	the machine starts moving again. This function reduces the feedrate to the deceleration speed set by the parameter		
Δ	Δ	Δ	Δ	_	_	_	_	_	_	when the external deceleration input signal has been set to ON. By checking the relative relation between interference objects, the interference can be prevented from occurring. One interference object is defined by one to sixteen tridimensional objects. The maximum definable number is 128 for the interference		
Δ	Δ	_	_		_	_	_	_	_	objects and is 256 for the tridimensional objects. The machine pre-reads the position to be moved during the operation to check the interference by the 3D model (machine, tool and jig) registered in advance. When an interference is predicted, an alarm will be shown immediately and all the axes		
										will be decelerated to stop.		
0	0	0	0	0	0	0	0	0	0	Under the CE marking scheme of the European safety standards (machine directive), the opening of any protection doors while a machine is moving is prohibited. When		
0	0	0	0	0	0	0	0	0	0	the door open signal is input from the PLC, this function first decelerates, stops all the control axes, establishes the ready OFF status, and then shuts off the drive power		
0	0	0	0	0	0	0	0	0	0	inside the servo drive units so that the motors are no longer driven. This function is used to prohibit the changing of machine parameters.		
0	0	0	0	0	0	0	0	0	0	The edit lock function B or C inhibits machining program B or C (group by machining program numbers) from being edited or erased when these programs		
0	0	0	0	0	0	0	0	0	0	require protection. This function allows the display of only a target program (label address 9000) to be disabled for the program display in the monitor screen, etc.		
Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	Up to 8 levels of access permission helps to prevent you from dispatching defective works.		
0	0	0	0	0	0	0	0	0	0	This function prevents the tool from breakage, through pulling up the cutting tool during emergency stop or instantaneous power interruption at low cutting speed.		
Δ	Δ	Δ	Δ	0	0	0	_	_	Δ	When an alarm occurs for an axis, this function performs an alarm stop only for the axes in a machine group to which the axis belongs.		
-	_	_	_	_	_	_	_	_	_	This function checks the relative position of up to six cuboids (referred to as interfering objects) all the time, and if a command which causes the interfering objects to collide with each other is issued, the function stops the axis movement to prevent the interference in advance. Such interference can be prevented by covering the tool post, etc. with cuboids.		
0	0	0	0	0	0	0	_	_	_	* Up to 4 part systems This function consists of a function of calculating the equivalent load ratio of spindle motor and a function of outputting the equivalent load ratio and temperature of spindle motor to the log file.		
0	0	0	0	0	0	0	0	0	0	This is a maintenance function which is useful for tracing down the history and NC operation information and analyzing problems, etc. This information is saved in the history data file, and can be displayed on the screen and output to a file.		
0	0	0	0	0	0	0	0	0	0	output as text data.		
0	0	0	0	0	0	0	0	0	0	The NC data back up function backs up the NC parameters atc. on a built in		
0	0	0	0	0	0	0	0	0	0	With this function, the servo parameters can be automatically adjusted by connecting the CNC and NC Analyzer2, which is an application that runs on a regular personal computer.		
0	0	0	0	0	0	0	0	0	O(GOT)	With this function, system data, ladder program and custom software can be automatically backed up in case of system failure.		

 $\hbox{OStandard} \ \ \triangle \hbox{Optional} \ \ \square \hbox{Selection} \ \ \hbox{Specifications of separated-type display are classified with "Windows-based" and non-Windows-based}$

				M80	00W	M8	00S	Lathe s M80W		80	E	30	C80
			class	M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_
Τ	8	Αp	Application error detection	0/—	0/—	_	_	0/—			-		_
	9	En	Email notification to operator	Δ	Δ	Δ	Δ	0	0	0	0	0	_
	10	NO	NC Configurator2 (Note 2)	0	0	0	0	0	0	0	0	0	0
	11	Dia	Diagnosis data output	0	0	0	0	0	0	0	0	0	0
	12	Ва	Backup / Restore	_	_	_	_	_	_	_	_	_	0
	14	Fie	Field network diagnostics										_
5	Fur	nctio	ctional safety		I		I						
	1		Safety observation	Δ	Δ	Δ	Δ	0	0	0	0	0	_
	2	Sn	Smart Safety observation										
		1	Safety-related I/O observation	Δ	Δ	Δ	Δ	0			_	_	Δ
				Δ	Δ	Δ	Δ	0			_	_	Δ
		\neg	B Drive safety function				I .	_	_				
		ŀ	1 SLS (Safely-Limited Speed)	Δ	Δ	Δ	Δ	0			_	_	Δ
			2 SLP (Safely-Limited Position)	Δ	Δ	Δ	Δ	0			_	_	Δ
			3 SOS (Safe Operating Stop)	Δ	Δ	Δ	Δ	0			_	_	Δ
			4 SSM (Safe Speed Monitor)	Δ	Δ	Δ	Δ	0			_	_	Δ
			5 SBC / SBT (Safe Brake Control / Safe Brake Test)	Δ	Δ	Δ	Δ	0			_	_	Δ
			6 SCA (Safe Cam)	Δ	Δ	Δ	Δ	0			_	_	Δ
			7 SS1 / SS2 (Safe Stop)	Δ	Δ	Δ	Δ	0			_	_	Δ
			8 STO (Safe Torque Off)	Δ	Δ	Δ	Δ	0			_	_	Δ
\perp			9 SCN (Safety Communication Network)	_	_	_		_	_	_	_	_	Δ
			ystem o / Spindle										
Г		Fe	Feed axis			_			_		_		
			MDS-E-Vx MDS-EH-Vx										
	li	3	MDS-EJ-Vx										
		5	MDS-EJH-Vx MDS-EM-SPVx										
	Ц	6	MDS-EMH-SPVx										
	2		Spindle MDS-E-SPx										
		2	MDS-EH-SPx										
			MDS-EJ-SPx MDS-EM-SPVx										
	Ц	6	MDS-EMH-SPVx										
	4		Power supply MDS-E-CV										
		2	MDS-EH-CV										
17 N		_	MDS-EX-CVP ne support functions										
	PL												
	1	Вι	Built-in PLC processing mode	0	0	0	0	0	0	0	0	0	_

(Note 2) Please contact us to purchase a full function version. A limited function version is also available free of charge.

E80 C80 C80 General explanation General explanation Application error detection function observes applications such as MITSUBISHI standard screen or custom screen. When an error such as screen lock is detected, this function saves information and data in the log to investigate the causes easily. This function erables NC to transmit emails to network-connected email servers (SMTP servers). With this function, the NC can send emails to PCs and mobile terminals away from machines. You are able to know machining conditions (such as machining completion, stop and failure) even if you are in remote places. NC Configurator2 runs on a personal computer to edit the NC data files required for NC control and machine operations such as parameters, tool data and common variables. NC Configurator3 runs on a personal computer to edit the NC data files required for NC control and machine operations such as parameters, tool data and common variables. NC Configurator3 runs on a personal computer to edit the NC data files required for NC control and machine operations such as parameters, tool data and common variables. NC Configurator3 runs on a personal computer to edit the NC data files required for NC control and machine operations such as parameters, tool data and common variables. This function, the information indicating the replacement cycle of the service parts used in NC, drive or motor can be output to the ZR registers. This function stores the setting information (sequence programs, parameters and the setting values, etc.) of a connected device to the installed data storage in GOT, and restores those data to the device as needed. This function displays the statistical information in packet transmission and reception (transmission/reception frequency, number of errors, etc.), which is necessary when the communication status of the function expansion unit (the field network expansion unit) is diagnosed. The safety observation function ensures safe access to the machine's working parts (e.g., for adjustment or	0 	E80 TypeB — O O O O O O O O O O O O O O O O O O	E80 TypeA - - - - - - - - - - - - -	M80 TypeB	M80 TypeA O O O O O O O O O O O O O O O O O O	M80W	Mac 00S M830S — Δ	M850S - △	00W M830W	M850W
Selection Sel	0 	E80 TypeB — O O O O O O O O O O O O O O O O O O	E80 TypeA - - - - - - - - - - - - -	M80 TypeB	M80 TypeA	- 0/- 0	M830S - Δ	M850S - △	M830W	M850W
Application error detection function observes applications such as MTSUBISHI standard screen or custom screen. When an error such as screen look is detected this function saves information and data in the log to investigate the causes easily. This function enables NC to transmit emails to network-connected email servers (SMTP servers). With this function, the NC can send emails to PCs and mobile terminals away from machines. You are able to know machining conditions (such as machining completion, stop and failure) even if you are in remote places. NC Configurator? runs on a personal computer to edit the NC data files required for NC control and machine operations such as parameters, tool data and common variables. NC With this function, the information indicating the replacement cycle of the service parts used in NC, drive or motor can be output to the ZR registers. This function stores the setting information (sequence programs, parameters and the setting values, etc.) of a connected device to the installed data storage in GOT, and restores those data to the device as needed. This function displays the statistical information in packet transmission and reception (transmission/reception frequency, number of errors, etc.), which is necessary when the communication status of the function expansion unit (the field network expansion unit) is diagnosed. The safety observation function ensures safe access to the machine's working parts (e.g., for adjustment or preparation) without shutting off the power, which reduces the time required to restart the machine (safety signal process logic made by users (safety PLC), if one circuit has broken down, the other circuit can detect errors, which improves the safety of signal process. * Safety card is required for M80. Emergency stop signal is doubled and observed to see whether there is any error. A When one emergency stop signal is no pen state, the wholes yttem can be set in	0 0 0	0 0 0 -	0 0 -	0 0 -	0 0 -	0 0	0			0/—
This function enables NC to transmit emails to network-connected email servers (SMTP servers). With this function, the NC can send emails to PCs and mobile terminals away from machines. You are able to know machining conditions (such as machining completion, stop and failure) even if you are in remote places. NC Configurator2 runs on a personal computer to edit the NC data files required for NC control and machine operations such as parameters, tool data and common variables. O O With this function, the information indicating the replacement cycle of the service parts used in NC, drive or motor can be output to the 2R registers. This function stores the setting information (sequence programs, parameters and the setting values, etc.) of a connected device to the installed data storage in GOT, and restores those data to the device as needed. This function displays the statistical information in packet transmission and reception (transmission/reception frequency, number of errors, etc.), which is necessary when the communication status of the function expansion unit (the field network expansion unit) is diagnosed. The safety observation function ensures safe access to the machine's working parts (e.g. for adjustment or preparation) without shutting off the power, which reduces the time required to restart the machine. Using the dual circuits for processing signals input/output to/from the machine (safety signal compare sequence) and dual execution of safety signal process logic made by users (safety PCL), if one circuit has broken down, the other circuit can detect errors, which improves the safety of signal process. * Safety card is accepted to the process of the time there is any error. Δ When one emergency stop signal is no open state, the whole system can be set in	0 0 0 -	0 0 -	0 0	0 0 -	0 0 -	0	0		Δ	
O O Configurator2 runs on a personal computer to edit the NC data files required for NC control and machine operations such as parameters, tool data and common variables. O O D With this function, the information indicating the replacement cycle of the service parts used in NC, drive or motor can be output to the ZR registers. This function stores the setting information (sequence programs, parameters and the setting values, etc.) of a connected device to the installed data storage in GOT, and restores those data to the device as needed. This function displays the statistical information in packet transmission reception (transmission/reception frequency, number of errors, etc.), which is necessary when the communication status of the function expansion unit (the field network expansion unit) is diagnosed. The safety observation function ensures safe access to the machine's working parts (e.g., for adjustment or preparation) without shutting off the power, which reduces the time required to restart the machine (safety signal compare sequence) and dual execution of safety signal process logic made by users (safety PLO), if one circuit has broken down, the other circuit can detect errors, which improves the safety of signal process. * Safety card is required for M80. Emergency stop signal is doubled and observed to see whether there is any error. When one emergency stop signal is n open state, the whole system can be set in	0 0 -	0 -	0 -	0 -	0 -	0		0		Δ
O O With this function, the information indicating the replacement cycle of the service parts used in NC, drive or motor can be output to the 2R registers. This function stores the setting information (sequence programs, parameters and the setting values, etc.) of a connected device to the installed data storage in GOT, and restores those data to the device as needed. This function displays the statistical information in packet transmission and reception (transmission/reception frequency, number of errors, etc.), which is necessary when the communication status of the function expansion unit (the field network expansion unit) is diagnosed. The safety observation function ensures safe access to the machine's working parts (e.g. for adjustment or preparation) without shutting off the power, which reduces the time required to restart the machine. Using the dual circuits for processing signals input/output to/from the machine (safety signal compare sequence) and dual execution of safety signal process logic made by users (safety PLO, if one circuit has broken down, the other circuit can detect errors, which improves the safety of signal process. * Safety card is required for M80. Emergency stop signal is doubled and observed to see whether there is any error. When one emergency stop signal is n open state, the whole system can be set in	-	_	_	_	_		0		0	0
the setting values, etc.) of a connected device to the installed data storage in GOT, and restores those data to the device as needed. This function displays the statistical information in packet transmission and reception (transmission/reception frequency, number of errors, etc.), which is necessary when the communication status of the function expansion unit (the field network expansion unit) is diagnosed. The safety observation function ensures safe access to the machine's working parts (e.g. for adjustment or preparation) without shutting off the power, which reduces the time required to restart the machine. Using the dual circuits for processing signals input/output to/from the machine (safety signal compare sequence) and dual execution of safety signal process logic made by users (safety PLC), if one circuit has broken down, the other circuit can detect errors, which improves the safety of signal process. * Safety card is required for M80. Emergency stop signal is doubled and observed to see whether there is any error. Δ When one emergency stop signal is n open state, the whole system can be set in				_		_		0	0	0
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	_						_	_	_	_
O — parts (e.g. for adjustment or preparation) without shutting off the power, which reduces the time required to restart the machine. Using the dual circuits for processing signals input/output to/from the machine (safety signal compare sequence) and dual execution of safety signal process logic made by users (safety PLC), if one circuit has broken down, the other circuit can detect errors, which improves the safety of signal process. "Safety card is required for M80. Emergency stop signal is doubled and observed to see whether there is any error. Δ When one emergency stop signal is in open state, the whole system can be set in		0	0	Τ						
Using the dual circuits for processing signals input/output to/from the machine (safety signal compare sequence) and dual execution of safety signal process logic —	- Δ			0	0	0	Δ	Δ	Δ	Δ
	- Δ									
— △ When one emergency stop signal is in open state, the whole system can be set in		_	_			0	Δ	Δ	Δ	Δ
arranger by also container. Callety data to required for whos.	Δ	_	_			0	Δ	Δ	Δ	Δ
Axis speed (command speed, FB speed) is observed doubly to see whether the	. Д	_	_			0	Δ	Δ	Δ	Δ
speed exceeds the safe speed. * Safety card is required for M80. Axis absolute position (command position, FB position) is observed doubly to see whether the position exceeds the safe position range. * Safety card is required for M80.		_	_			0	Δ	Δ	Δ	Δ
Axis stop speed (command speed, FB speed) is observed doubly whether the speed exceeds the safe stop speed. Axis stop position (command position, FB position) is observed doubly whether the position exceeds the safe stop position range. Doserve axis stop position deviation (difference between command position and FB position) doubly to see whether the deviation exceeds the safe stop position deviation.	Δ	_	_			0	Δ	Δ	Δ	Δ
* Safety card is required for M80. This function uses the safety signals to inform that the axis speed (command speed, FB speed) is equal to or below the safe speed. * Safety card is required for M80.	· Δ	_	_			0	Δ	Δ	Δ	Δ
The brakes connected to motors are activated by this function. Because there are two circuits for activating the brakes, one circuit can activate the brakes even whe —	Δ	_	_			0	Δ	Δ	Δ	Δ
This function uses the safety signals to inform that the axis absolute position (command position, FB position) is within the range of safe position. *Safety card is required for M80.	- Δ	_	_			0	Δ	Δ	Δ	Δ
[Safe stop 1 (SS1)] STO function is activated after an axis is decelerated and the speed (command speed, FB speed) becomes equal to or below the safe stop										
speed. △ [Safe stop 2 (SS2)] SOS function is activated after an axis is decelerated and the speed (command speed, FB speed) becomes equal to or below the safe stop speed. * Safety card is required for M80.	Δ	_	_			0	Δ	Δ	Δ	Δ
Salety card is required nor woo. This function shuts OFF power supply to axes. Because there are two power Δ shutoff circuits, one circuit can shut OFF the power supply even when the other						0	Δ	Δ	Δ	Δ
circuit is broken down. "Safety card is required for M80. This function performs safety communication between master station and local station using CC-Link IE field network.		_	_	_	_	_	_	_		
Station daing CO-blinic lield network.										
	_									
							П			
CNC-dedicated drive units, spindle motors, and servo motors are used.										
	_									
	_									
	_									
An exclusive sequence program that controls various signals between the controlle — and the machine to realize the operations applicable to each machine can be created and built in.	_	0	0			0				0

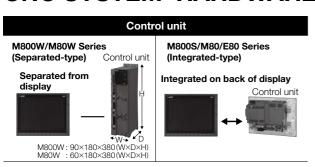
		Lathe system										
	class	M80	DOW	M8	00S	M80W	M80	80 M80	E80	80 E80	C	
		M850W	M830W	M850S	M830S	_	TypeA	TypeB	TypeA	TypeB	-	
2	PLC functions											
	1 Built-in PLC basic function	0	0	0	0	0	0	0	0	0	(MEL	
	1 Index modification	0	0	0	0	0	0	0	0	0	(MEL	
	2 Multi-program [number of programs]	0120	0120	0120	0120	060	060	060	060	060		
	3 Multi-project [number of projects stored]										(MEI	
	Number of PLC projects: 2	0	0	0	0	_	_	0	0	0		
	Number of PLC projects: 3 Number of PLC projects: 6	Δ	Δ	Δ	Δ	0	0		_		<u> </u>	
	4 Function block (FB)	0	0	0	0	0	0	0	0	0	<u> </u>	
											(ME	
-	5 Label programming	0	0	0	0	0	0	0	0	0	(ME	
	2 PLC exclusive instruction	0	0	0	0	0	0	0	_	_	(ME	
	3 Enhanced PLC security mode	0	0	0	0	0	0	0	0	0		
$^{+}$	PLC support functions	-										
-	1 Alarm message display	0	0	0	0	0	0	0	0	0		
	2 Operator message display	0	0	0	0	0	0	0	0	0		
}	3 Memory switch (PLC switch)										\vdash	
ľ	1 Memory switch (PLC switch) 32 points	0	0	0	0	_	_	_	0	0		
	2 Memory switch (PLC switch) 64 points 3 Memory switch (PLC switch) 96 points	Δ	Δ	Δ	Δ	0	0	0				
ŀ	4 Load meter display	0	0	0	0	0	0	0	0	0		
h	5 User PLC version display	0	0	0	0	0	0	0	0	0		
ľ	6 Ladder program writing during RUN	0	0	0	0	0	0	0	0	0	(ME	
ľ	7 PLC program protection	0	0	0	0	0	0	0	0	0	(ME	
+	Built-in PLC capacity										_	
T	Standard PLC capacity [number of steps]	O128K	O128K	O128K	O128K	O64K	O64K	O32K	O20K	O20K		
L	2 Large PLC capacity: 256K steps								- OZUK	- OZUK	(ME	
ľ		Δ	Δ	Δ	Δ				_	_		
	3 Large PLC capacity: 512K steps	Δ	Δ	Δ	Δ	_	_	_	_	_		
5	Machine contact input / output I/F	0	0	0	0	0	0	0	0	0	(ME	
3	Ladder monitor	0	0	0	0	0	0	0	0	0	0(
+	PLC development											
Ť	1 On-board development	0	0	0	0	0	0	0	0	0	0(
ŀ	2 MELSEC development tool (GX Developer)	0	0	0	0	0	0	0	0	0	<u> </u>	
ŀ	3 MELSEC development tool (GX Works2) (Note 1)	0	0	0	0	0	0	0	0	0	+	
H	4 MELSEC development tool (GX Works2) (Note 1)	0				U					+	
4	4 MELSEC development tool (GX Works3) (Note 1) PLC parameter			_		_	_		_	_		
ι.	1 PLC constant (150 points)	0	0	0	0	0	0	0	0	0		
+	2 PLC constant extension (Up to 750 points)	0	0	0	0	0	0	0				
Ţ	GOT connection		_	_		_	_	_				
9	1 Ethernet connection	0	0	0	0	0	0	0	0	0		
9	10 00 1:1	0	0	0	0	0	0	0	0	0	(ME	
9	2 CC-Link connection		_	_	_	_	_	_	_	_	(ME	
)	2 CC-Link connection 3 CC-Link IE field network connection	_		1				I			1	
0	3 CC-Link IE field network connection Pallet program registration		_	_	_	_	_	_	_	_		
0	3 CC-Link IE field network connection Pallet program registration achine construction	_	_									
9 0	3 CC-Link IE field network connection Pallet program registration achine construction Servo OFF			0	0 0	0	0	0	0	0	-	

M800W M800S				chining c			_			
M80	ow		00S	M80W	M80	80 M80	E80	80 E80	C80	General explanation
M850W	M830W	M850S	M830S	_	TypeA	TypeB	TypeA	TypeB	_	
0	0	0	0	0	0	0	0	0	(MELSEC)	
0	0	0	0	0	0	0	0	0	Δ	
									(MELSEC)	[M800/M80/E80]
0120	0120	0120	0120	O60	O60	O60	060	O60	(MELSEC)	Basic commands (bit processing commands): LD, LDI, OR, ORI, AND, ANI, OUT, PLS, etc.
0		0								Function commands: Data transfer, 4 basic arithmetic operations, logic arithmetic operations, large/small identification, binary/BCD conversion, branching, conditional
Ο	Ο Δ	Ο	Ο	0	0	0	0	0	_	branching, decoding, encoding, etc. [C80]
Δ	Δ	Δ	Δ	_		_	_	_	_	For the details, refer to the manual of MITSUBISHI Programmable Controller
0	0	0	0	0	0	0	0	0	Δ	"MELSEC iQ-R series".
_									(MELSEC)	
0	0	0	0	0	0	0	0	0	(MELSEC)	
0	0	0	0	0	0	0	_	_	(MELSEC)	PLC-dedicated instruction is provided for some limited applications, enabling a complex machining process, which is difficult to carry out only by the basic instructions and function instructions.
0	0	0	0	0	0	0	0	0	_	This function restricts connections to the built-in PLC from applications such as PLC on-board and GX Developer/GX Works2.
										. 22 2.1 2000 and are sorting of the tropics.
0	0	0	0	0	0	0	0	0	_	The contents of the alarms which have occurred during sequence (user PLC) processing can be displayed on the setting and display unit.
										When some conditions occur where you wish to inform a messages to the
0	0	0	0	0	0	0	0	0	0*	operator, an operator message can be displayed separately from the alarm message.
										* Only the macro alarm message can be displayed.
0	0	0	0	_	_	_	0	0	_	
Δ	Δ	Δ	Δ	0	0	0	_	_	_	PLC switches can be set on the setting and display unit screen, and the ON / OFF control executed.
Δ	Δ	Δ	Δ	_	_	_	_	_	_	och in direction.
0	0	0	0	0	0	0	0	0	0	A load meter can be displayed on the setting and display unit.
0	0	0	0	0	0	0	0	0	0	The user PLC version can be displayed in the software list on the Software Configuration screen.
0	0	0	0	0	0	0	0	0	(MELSEC)	Ladder program can be edited while PLC is running. This function is available, either by GX Developer or PLC onboard edit.
									(WEEGEG)	[M800/M80/E80]
0	0	0	0	0	0	0	0	0	(MELSEC)	For PLC data protection, the file password can be set to each file of PLC data. [C80]
									(IVILLOLO)	For the details, refer to the manual of MITSUBISHI Programmable Controller "MELSEC iQ-R series".
								1		[M800/M80/E80]
O128K	O128K	O128K	O128K	O64K	O64K	O32K	O20K	O20K	(MELSEC)	In the program memory, it is possible to store the system area of parameters,
Δ	Δ	Δ	Δ	_	_	_	_	_		intelligent function module parameters, sequence programs, device comments, and device initial values.
Δ	Δ	Δ	Δ	_	_	_	_	_	_	[C80] For the details, refer to the manual of MITSUBISHI Programmable Controller
										"MELSEC iQ-R series". [M800/M80/E80]
								l		[IVIGOO/IVIGO/EGG]
										The operation panel I/O unit or the remote I/O unit is selected based on the types
0	0	0	0	0	0	0	0	0	∆ (MELSEC)	The operation painel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required.
0	0	0	0	0	0	0	0	0	Δ (MELSEC)	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable
0	0	0	0	0	0	0	0	0		The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller "MELSEC IO-R Series".
0	0	0	0	0	0	0	0	0		The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller "MELSEC IQ-R Series". [M600/M80/E80] This function enables the operating status of the sequence circuit to be checked
0	0	0	0	0	0	0	0	0		The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller "MELSEC IO-R Series". [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80]
									(MELSEC)	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller "MELSEC IO-R Series". [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit.
									(MELSEC)	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller "MELSEC IO-R Series". [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. "Sequence program monitor" (GOT2000) is used.
									(MELSEC)	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller "MELSEC IO-R Series". [M800/M80/E0] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. "Sequence program monitor" (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubish CNC on-board realizes functions and operations similar to the
0	0	0	0	0	0	0	0	0	(MELSEC)	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller *MELSEC IQ-R Series*. [M800/M80/E80] [M800/M80/E80] M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. "Sequence program monitor" (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubishi CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GV Developer).
0	0	0	0	0	0	0	0	0	(MELSEC)	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller *MELSEC IO-R Series*. [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. "Sequence program monitor" (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubish CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer.
0	0	0	0	0	0	0	0	0	(MELSEC)	The operation pane I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller "MELSEC IO-R Series". [MBOO/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. "Sequence program monitor" (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubishi CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function reables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer.
0	0 0	0	0	0	0	0	0 0	0 0	(MELSEC)	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller *MELSEC iQ-R Series*. [M800/M80/E80] [M800/M80/E80] [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. *Sequence program monitor* (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubishi CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GA Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer.
0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0	0 0 0	O(GOT)	The operation panel VD unit or the remote VD unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the VO modules of the MITSUBISHI Programmable Controller "MELSEC IQ-R Series". [MB00/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. "Sequence program monitor" (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubishi CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the state of the PLC contained inside the NC system to be developed and debugged using the GX Works2. Using GX Works3, the sequence programs of the MELSEC CPU can be developed and debugged.
0 0 0 -	0 0 0 -	0 0 0 -	0 0 0 -	0 0 0 0 -	0 0 0 0 -	0 0 0 -	0 0 0	0 0 0 -	O(GOT) O(GOT) O	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller *MELSEC IO-R Series*. [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. "Sequence program monitor" (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubishi CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer.
0 0 0 0 -	0 0 0 -	0 0 0 0 -	0 0 0 0 -	0 0 0 0 -	0 0 0 0 -	0 0 0 0 -	0 0 0 0 -	0 0 0 0 -	O(GOT) O(GOT) O	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller *MELSEC IO-R Series*. [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. "Sequence program monitor" (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubish CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Works2. Using GX Works3, the sequence programs of the MELSEC CPU can be developed and debugged. The PLC constants set with the data type, and the bit selection parameters set
0 0 0 0 0 0	0 0 0 -	0 0 0 -	0 0 0 -	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 -	0 0 0 -	O(GOT) O(GOT) O O	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller *MELSEC iQ-R Series*. [M800/M80/E80] [M800/M80/E80] [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. *Sequence program monitor* (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubishi CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the state of the PLC contained inside the NC system to be developed and debugged using the GX Works2. Using GX Works3, the sequence programs of the MELSEC CPU can be developed and debugged using the GX works2.
0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 -	O(GOT) O(GOT) O	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller "MELSEC IO-R Series". [M800/M80/E0] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. "Sequence program monitor" (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubish CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Moviss2. Using GX Works3, the sequence programs of the MELSEC CPU can be developed and debugged. The PLC constants set with the data type, and the bit selection parameters set with the bit types can be specified on the screen as the parameters to use in the built-in PLC.
0 0 0 0 0 0	0 0 0 -	0 0 0 -	0 0 0 -	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 -	0 0 0 -	(MELSEC) O(GOT) O(GOT) O O (MELSEC)	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller *MELSEC iQ-R Series*. [M800/M80/E80] [M800/M80/E80] [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. *Sequence program monitor* (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubishi CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the state of the PLC contained inside the NC system to be developed and debugged using the GX Works2. Using GX Works3, the sequence programs of the MELSEC CPU can be developed and debugged using the GX works2.
0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 -	(MELSEC) O(GOT) O(GOT) O O Δ	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller *MELSEC IO-R Series*. [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. "Sequence program monitor" (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubishi CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Works2. Using GX Works3, the sequence programs of the MELSEC CPU can be developed and debugged. The PLC constants set with the data type, and the bit selection parameters set with the bit types can be specified on the screen as the parameters to use in the built-in PLC.
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 -	(MELSEC) O(GOT) O(GOT) O O O (MELSEC)	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller *MELSEC IO-R Series*. [M800/M80/E0] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. "Sequence program monitor" (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubish CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Morks2. Using GX Works3, the sequence programs of the MELSEC CPU can be developed and debugged. The PLC constants set with the data type, and the bit selection parameters set with the bit types can be specified on the screen as the parameters to use in the built-in PLC. For connecting a MITSUBISHI Graphic Operation Terminal (GOT), refer to the GOT Catalogs.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0	(MELSEC) O(GOT) O(GOT) O O O (MELSEC)	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller *MELSEC IO-R Series*. [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. *Sequence program monitor* (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubishi CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Poweloper. The PLC constants set with the data type, and the bit selection parameters set with the bit types can be specified on the screen as the parameters to use in the built-in PLC. For connecting a MITSUBISHI Graphic Operation Terminal (GOT), refer to the GOT Catalogs.
О О О О О О О О О О О О О О О О О О О	О О О О О О О О О О О О О О О О О О О	О О О О О	О О О О О О О О О О О О О О О О О О О	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O(GOT) O(GOT) O O O (MELSEC)	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller *MELSEC iQ-R Series*. [M800/M80/E80] [M800/M80/E80] [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. "Sequence program monitor" (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubishi CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Works2. Lysing GX Works3, the sequence programs of the MELSEC CPU can be developed and debugged using the GX Works2. The PLC constants set with the data type, and the bit selection parameters set with the bit types can be specified on the screen as the parameters to use in the built-in PLC. For connecting a MITSUBISHI Graphic Operation Terminal (GOT), refer to the GOT Catalogs. When the serve OFF signal (per axis) is input, the corresponding axis is set in the
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0	(MELSEC) O(GOT) O(GOT) O O O (MELSEC)	The operation panel I/O unit or the remote I/O unit is selected based on the types of input signals (sink/source) or output signals (source) available for input or output and the number of contacts required. [C80] The device is selected from the I/O modules of the MITSUBISHI Programmable Controller *MELSEC IO-R Series*. [M800/M80/E80] This function enables the operating status of the sequence circuit to be checked on the controller's setting and display unit. [C80] This function enables to display on GOT the operating status of the sequence circuit to be checked. *Sequence program monitor* (GOT2000) is used. On-board refers generically to the PLC related operations carried out with the CNC unit. The Mitsubishi CNC on-board realizes functions and operations similar to the MELSEC Series ladder development tool (GX Developer). This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. This function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Developer. The function enables the data of the PLC contained inside the NC system to be developed and debugged using the GX Works2. Using GX Works3, the sequence programs of the MELSEC CPU can be developed and debugged. The PLC constants set with the data type, and the bit selection parameters set with the bit types can be specified on the screen as the parameters to use in the built-in PLC. For connecting a MITSUBISHI Graphic Operation Terminal (GOT), refer to the GOT Catalogs.

Meson Mes			M800W M800					system	•			000
3 Synchronous control		class					M80W		80 M80	E80	80 E80	C80
4 Inclined axis control Δ Δ Δ Δ Q			MOSOM	M830W	M850S	M830S	_	ТуреА	ТуреВ	TypeA	ТуреВ	_
5 Position switch	3	Synchronous control	Δ	Δ	Δ	Δ	0	0	0	_	_	Δ
7 Index table Indexing	4	Inclined axis control	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
B Tool length compensation along the tool axis	5	Position switch	024	024	024	024	024	024	024	024	024	0*
9 Tool handle feed & interruption	7	Index table indexing	0	0	0	0	0	0	0	0	0	0
10 Tool center coordinate display	8	Tool length compensation along the tool axis	Δ*	Δ*	Δ*	Δ*	_	_	_	_	_	_
11 Tool center point control	9	Tool handle feed & interruption	_	_	_	_	_	_	_	_	_	_
12 Inclined surface machining command	10	Tool center coordinate display	_	_	_	_	_	_	_	_	_	_
13 Simple inclined surface machining command	11	Tool center point control	_	_	_	_	_	_	_	_	_	_
14 3-dimensional tool radius compensation (Tool's vertical-direction compensation) Δ*	12	Inclined surface machining command	Δ	Δ	Δ	Δ	0	0	_	_	_	_
10 (Tool's vertical-direction compensation)	13	Simple inclined surface machining command	Δ	Δ	Δ	Δ	0	0	0	0	_	_
16 3-dimensional manual feed	14		Δ*	Δ*	Δ*	Δ*	_	_	_	_	_	_
17 R-Navi	15	Workpiece installation error compensation	Δ*	_	Δ*	_	_	_	_	_	_	_
18 Simple synchronous control	16	3-dimensional manual feed	Δ	Δ	Δ	Δ	0	0	_	_	_	_
20 Real-time tuning	17	R-Navi	_	_	_	_	_	_	_	_	_	_
1 Real-time tuning 1 (speed gain)	18	Simple synchronous control	_	_	_	_	_	_	_	_	_	_
2 Real-time tuning 2 (rapid traverse time constant) Δ	20	Real-time tuning				I					1	
21 Constant torque control		1 Real-time tuning 1 (speed gain)	Δ	Δ	Δ	Δ	0	0	_	_	_	_
22 External encoder position output I/F		2 Real-time tuning 2 (rapid traverse time constant)	Δ	Δ	Δ	Δ	0	0	_	_	_	_
23 Multiple-axis synchronization control	21	Constant torque control	Δ	Δ	Δ	Δ	0	0	0	0	0	_
3 PLC operation 1 Arbitrary feed in manual mode ○ </td <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>_</td>			0	0	0		0	0	0	0	0	_
1 Arbitrary feed in manual mode O O O O 2 Circular feed in manual mode Δ Δ Δ Δ Δ 3 PLC axis control O O O O O 5 PLC axis indexing O O O O O 6 NC axis / PLC axis switchover Δ Δ Δ Δ O O		l.,,,,,,,	_		_		_			_	_	_
2 Circular feed in manual mode Δ Δ Δ Δ Δ Ο Ο 3 PLC axis control O O O O O O 5 PLC axis indexing O O O O O O 6 NC axis / PLC axis switchover Δ Δ Δ Δ O O		r ·	0	0	0	0	0	0	0	0	0	0
5 PLC axis indexing O O O O O 6 NC axis / PLC axis switchover Δ Δ Δ Δ O O	1 -								0	_	_	_
6 NC axis / PLC axis switchover Δ Δ Δ Δ O O	3	PLC axis control	0	0	0	0	0	0	0	0	0	0
	5	PLC axis indexing	0	0	0	0	0	0	0	0	0	0
			Δ	Δ	Δ	Δ	0	0	0	_		Δ
4 PLC interface			0	0	0	0	0	0	0	0	0	0
2 CNC status signal 0 0 0 0 0	-								0	0	0	0
3 PLC window 0 0 0 0 0									0	0	0	0

M80	oow	M8	008	M80W		80		80	C80	General explanation
M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_	deneral explanation
Δ	Δ	Δ	Δ	0	0	0	_	_	Δ	The synchronous control is a control method whereby both master and slave axes are controlled with the same travel command by designating the travel command for the master axis also to the slave axis. This function is assumed to be used in such equipment as large machine tools, which drive one axis with two servo motors.
Δ	Δ	Δ	Δ	0	0	0	_	_	_	Even when the control axes in a machine are mounted at an angle other than 90 degrees, this function enables it to be programmed and controlled in the same way as with an orthogonal axis.
024	024	O24	024	024	024	024	024	024	0*	Instead of a dog switch on a machine's axis, a hypothetical dog switch is established using a parameter to set a coordinate position to show the axis name and the hypothetical dog position. When the machine reaches the position, a signal is output to the PLC interface. "24 points for each part system and 32 points for the whole PLC axes.
0	0	0	0	0	0	0	0	0	0	The indexing of the index table can be performed by setting the index axes.
Δ	Δ	Δ	Δ	_	_	_	_	_	-	(1) Changing the tool length compensation along the tool axis and compensation amount Even if the tool axis direction is not the Z axis direction because the rotary axis is rotated, the tool can be compensated in the tool axis direction. (2) Machine configuration The tool length compensation along the tool axis is carried out in respect to the direction of the tool nose axis (rotary axis). *This function is available during program format switch for L system.
Δ	Δ	Δ	Δ	_	_	_	_	_	_	This function makes it possible to move the axis with the manual pulse generator in the tool axis direction, tool diameter direction X and tool diameter direction Y in the hypothetical coordinate system over the tool axis.
Δ	Δ	Δ	Δ	_	_	_	_	_	_	The tool center coordinates, handle interrupt amount (tool axis movement) and tool center point speed are displayed during the tool center point control function, tool length compensation along the tool axis function, and tool handle feed & interrupt function (tool axis direction handle feed, tool handle interrupt, tool diameter direction handle feed, nose center rotation handle feed).
Δ	Δ*	Δ	Δ*	0*	0*	_	_	_	-	This function controls so that the position command in a machining program is at the tool center point in the coordinate system (table coordinate system) which rotates together with the workpiece. * Restrained to 4-axis simultaneous contouring for M830/M80W/M80A
Δ	Δ	Δ	Δ	0	0	_	_	_	Δ	An arbitrary spatial plane defined with this function can be machined using normal program commands.
_	_	_	_	_	_	_	_	_	_	This includes simple tool center point control. This function is used when a lathe with the orthogonal axes XYZ and the turret with B axis performs the milling on the inclined surface in the end face direction. This allows the operator to perform outting on an inclined surface with no need for considering the inclination angle.
Δ	Δ	Δ	Δ	_	_	_	_	_	-	This function is to compensate the tool radius of the 5-axis machine with two rotary axes, in accordance with the change of the workpiece direction and inclination of the tool due to the movement of the rotary axis. * This function is available during program format switch for L system.
Δ	_	Δ	_	_	_	_	_	_	_	This function is used for a 5-axis machine. This compensates the error when a workpiece is placed off the workpiece coordinate system to enable machining according to the program. * This function is available during program format switch for L system.
Δ	Δ	Δ	Δ	0	0	_	_	_	Δ	By selecting the hypothetical coordinate system to be machined, axis can be moved with manual feed (JOG, HANDLE or INCREMENTAL) in the coordinate system with this function. It can be easy to setup because multiple axes is moved by NC according to the tool angle or the inclination of the table.
Δ	Δ	Δ	Δ	0	0	_	_	_		This provides easy setup of index machining (multiple/inclined surface machining) using a rotary axis.
Δ	Δ	Δ	Δ	0	0	_	_	_	_	This function enables an axis to be synchronized with the axis previously defined as master axis for the synchronous control, and another axis to be synchronized with the slave axis.
Δ	Δ	Δ	Δ	0	0	_	_	_	_	This function estimates the inertia (or workpiece weight) of mechanical system and changes the speed control gain automatically according to the estimation results to suppress mechanical vibration. Users can expect suppression of vibration caused by inertia fluctuation, as well as reduction of machining time through adaptation of appropriate speed control gain.
Δ	Δ	Δ	Δ	0	0	_	_	_	_	This function estimates the inertia (or workpiece weight) of mechanical system and optimizes the acceleration/deceleration time constant automatically according to the estimation results. It achieves the cycle time reduction when the inertia of workpiece to machine changes significantly.
Δ	Δ	Δ	Δ	0	0	0	0	0	_	The servo motor of the axis designated for [Constant torque control] outputs the torque set by the parameter in a constant direction. The servo motor of the axis designated for [Proportional torque stopper control] generates the torque set by the parameter in the stopper direction.
0	0	0	0	0	0	0	0	0	_	This function outputs the position (angle) of external encoder to PLC device based on the input pulses from the encoder. This function can be used to monitor the position of angular head which the external encoder is connected to. * Encoder expansion card is required for M800W/M80W
Δ	Δ	Δ	Δ	0	0	0	0			Multiple-axis synchronization control is the function that enables multiple slave axes to be synchronized with commands to the master axis.
0	0	0	0	0	0	0	0	0	0	This is a function to control the NC control axis with command from the PLC in addition to the normal automatic operation command on the NC.
Δ	Δ	Δ	Δ	0	0	0	_	_	_	By specifying a hypothetical coordinate on the machine coordinate from the user PLC, oblique linear interpolation or circular interpolation is executed with jog / handle feed, manual rapid traverse or incremental feed of either X axis or Y axis.
0	0	0	0	0	0	0	0	_	0	This function allows independent axes to be controlled with PLC-based commands, separately from the NC control axes.
0	0	0	0	0	0	0	0	_	0	PLC axis indexing allows a PLC axis to function as an auxiliary axis with no need for changing the user ladder used conventionally for an auxiliary axis.
Δ	Δ	Δ	Δ	0	0	0	_	_	Δ	This function is to use one drive unit by switching the control from the NC or the PLC dynamically. The function of the NC axis can be used during the NC axis control and the function of the PLC axis can be used during the PLC axis control respectively.
0	0	0	0	0	0	0	0	0	0	Control commands to the CNC system are assigned from the PLC. Input signals with skin inputs that respond at high speed can also be used
0	0	0	0	0	0	0	0	0	0	with skip inputs that respond at high speed can also be used. The status signals are output from the CNC system. They can be utilized by referencing them from the PLC.
0	0	0	0	0	0	0	0	0	0	[M800/M80/E80] This function uses the "read window" or "write window" assigned to the R register's user area to read and write the CNC operation status, axis information, parameters and tool data, etc. [C80] This function uses the "read window" or "write window to read and write the CNC operation status, axis information, parameters and tool data, etc.

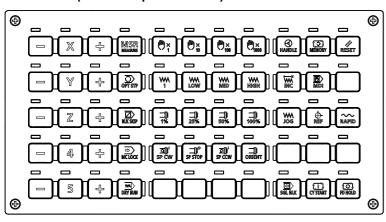
						Lathe :	system				
	alaaa	M8	00W	M8	00S	M80W		80	E	80	C80
	class	M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_
2	External search	0	0	0	0	0	0	0	0	0	0
5	Direct Screen Selection	0	0	0	0	0	0	0	0	0	0
6	Buzzer sound control	0	0	0	0	0	0	0	0	0	_
	lachine contact I/O										
			T = /					1			<u> </u>
	1 DI:64 / DO:64 2 DI:64 / DO:64+SDI:8	□/—	□/—	_		□/—	_				+=
	3 DI:96 / DO:64	_/D	_/D			_/D					
	5 DI:64 / DO:48 / AO:1	—/□	-/-			—/□					<u> </u>
2	Remote I/O										
	1 DI:32 / DO:32										
	2 DI:64 / DO:48										_
	3 DI:64 / DO:48+AO:1										
	5 DI:16 / DO:8										
	6 DI:32 / DO:32+SDI:8 / SDO:4 7 SDI:8 / SDO:4										
6 F	rternal PLC link					Ш	Ш				_
	Atomain Eo iii ik										
1	CC-Link (Master / Local)										(MELSEC)
2	PROFIBUS-DP (Master)										_
3	CC-Link IE Field network (Master / Local)										△ (MELSEC)
5	EtherNet/IP										_
8	FL-net										Δ (MELSEC)
Ш	CC-Link IE Field Basic	0	0	0	0	0	0	0	0	0	_
/ Ir	stalling S/W for machine tools Customization(NC Designer2) (Note 1)	0	0	0	0	0	0	0	0	0	
۱ř	Customization data storage capacity [MB]			6	6		6	6	1	1	
	2 Customization working memory size [MB]	6	6	6	6	3	3	3	1	1	T -
2	1 1	0	0	0	0	0	0	0	0	0	T _
3		0	0	0	0	0	0	0	0	0	
	EZSOCKELI/F (Note 1)	0	0	0	0	0	0	0	0	0	_
2	APLC release (Note 1)	Δ	Δ	Δ	Δ	0	0	0	0	0	Δ
5	Custom API library	0	0	0	0	0	0	0	0	0	_
6	MES interface library	Δ	Δ	Δ	Δ	0	0	0	0	0	_
7	SLMP Server	0	0	0	0	0	0	0	0	0	_
8	Mitsubishi CNC communication software FCSB1224W000 (Note 1)	0	0	0	0	0	0	0	0	0	_
	GOT2000 screen design tool GT Works3 thers	_	_	_		_	_		_		0
1	System lock	Δ	Δ	Δ	Δ	0	0	0	0	0	_
2							_		-		
۱۴	1 NC Monitor2 (Note 1)	0	0	0	0	0	0	0	0	0	0
	1 140 MOUNTED LA MONTO 1)	<u> </u>	<u> </u>					<u> </u>		<u> </u>	
	2 NC Explorer (Note 3)	0	0	0	0	0	0	0	0	0	0
3	Automatic operation lock	0	0	0	0	0	0	0	0	0	0
2	Power consumption computation	0	0	0	0	0	0	0	0	0	0
5	EcoMonitorLight connection	0	0	0	0	0	0	0	0	0	_
6	GOT Window	_	_	_	_	_	_	_	_	_	0
7	Log Viewer	_	_	_	_	_	_	_	_	_	0

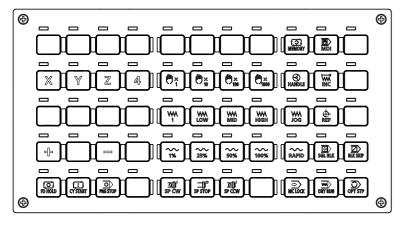

[M800/M80/E80]S/W ver.F2 [C80]S/W ver.B7

					enter sys					
M80	woo	M8	00S	M80W		80		80	C80	General explanation
M850W	M830W	M850S	M830S	_	M80 TypeA	M80 TypeB	E80 TypeA	E80 TypeB	_	·
0	0	0	0	0	0	0	0	0	0	This function enables searching of the program to automatically start from the PLC. The program No., block No. and sequence No. can be designated. In addition, the details of the search in progress can be read.
0	0	0	0	0	0	0	0	0	0	This signal allows an automatic transition to the alarm display screen when an alarm occurs.
0	0	0	0	0	0	0	0	0	_	This function gives a buzzer mounted on the NC keyboard by operating the PLC device. This is effective in applications of sounding a buzzer such as during the alarm occurrence, or for the program operation end notification.
□/—	□/—	_	_	□/—	_	_			_	Some types of signals can be input/output from the operation panel I/O unit
-/-	-/0			-/□						according to the type and No. of contacts.
—/□	—/□			—/□					_	
									_	
П		П		П	П		П			The remote I/O unit equipped with the maximum number of DI/DO points is the one with 64 points for DI and 48 points for DO. Multiple remote I/O units can be
										used as long as the total number of occupied stations is 64 or less. * Safety card is required for M80 when using ""Dl:32/DO:32+SDl:8/SDO:4"" or
									_	"SDI:8/SDO:4".
									_	
	0				0				Δ (MELSEC)	[M800/M80/E80] NC unit can be directly connected to the network to serve as the master/local station of the MELSEC CC-Link. [C80] Refer to manuals of each unit of MITSUBISHI Programmable Controller "MELSEC io-R series" for information on the function and the performance.
									_	NC can input / output devices to / from slave stations as a master station of PROFIBUS-DP communication by connecting to PROFIBUS-DP-capable slave stations.
									(MELSEC)	Refer to manuals of each unit of MITSUBISHI Programmable Controller "MELSEC IQ-R series" for information on the function and the performance.
									_	By mounting EtherNet/IP function expansion unit on NC control unit to connect EtherNet/IP-compatible equipment, PLC devices can be input/output using NC control unit as a scanner or an adapter for EtherNet/IP communication.
									Δ (MELSEC)	[M800/M80/E80] FL-net communication is available by mounting FL-net expansion unit on the NC control unit. [C80] Refer to manuals of each unit of MITSUBISHI Programmable Controller "MELSEC iO-R series" for information on the function and the performance.
0	0	0	0	0	0	0	0	0	_	CC-Link IE Field Basic enables periodical data communication (cyclic data transmission) between master station and slave station by connecting the NC controller to CC-Link IE Field Network Basic compatible devices via built-in Ethernet port.
0	0	0	0	0	0	0	0	0	_	
		6	6		6	6	1	1	_	It is an optional function that allows a user-created screen or window to be displayed as an HMI screen or another application on the screen.
6	6	6	6	3	3	3	1	1	_	* Capacity depends on memory space for M800W/M80W This function allows an arbitrary character string to be assigned to a key and
0	0	0	0	0	0	0	0	0	_	makes it easy to input a typical character string. This middleware makes it easy to develop applications having the Windows
Δ	Δ	Δ	Δ	0	0	0	0	0	Δ	interface. APLC (Advanced Programmable Logic Controller) release is a function that allows the user-generated C language module to be called from the NC. Control operations that are difficult to express in a sequence program can be created with the C language.
0	0	0	0	0	0	0	0	0	_	This function is designed to interface an NC with an application developed by a user. You can set and refer the data for NC using this function. * Please contact us for details.
Δ	Δ	Δ	Δ	0	0	0	0	0	_	The MES interface library function links the NC internal data and the database of information system (manufacturing execution system) without a communication gateway.
0	0	0	0	0	0	0	0	0	_	Transfers data using the SLMP between an NC and an external device. This function enables easy connection with external devices and read/write NC data through the Ethernet cable.
0	0	0	0	0	0	0	0	0	_	The software designed to help development of an application with Windows interface for Mitsubishi computerized numerical controller. The product can accelerate development by using OLE interface common to computerized numerical controller without knowing internal processing of the machine.
_	<u> </u>	_		_	_		_	<u> </u>	0	This integrated software is used to create professional screen designs for GOTs.
Δ	Δ	Δ	Δ	0	0	0	0	0	_	This function locks the operations of the NC if the release code is not entered before the specified time limit.
0	0	0	0	0	0	0	0	0	0	NC Monitor2 is a PC software tool that monitors information in the NC unit connected with the Ethernet.
0	0	0	0	0	0	0	0	0	0	NC Explorer is a software tool to operate the machining data files of each NC unit connected with a host personal computer by Ethernet connection from the Explorer on the host personal computer.
0	0	0	0	0	0	0	0	0	0	Automatic operation lock function prevents the falsification of APLC (C language module) by a third party.
0	0	0	0	0	0	0	0	0	0	Present power consumption and accumulated power consumption can be acquired with this function. The present power consumption notifies the instantaneous power consumption and the accumulated power consumption notifies the integrated value of the present power consumption.
0	0	0	0	0	0	0	0	0	_	NC system can collect and manage the electric power of the machine tool which is measured by the energy measuring unit "EcoMonitorLight (sold separately)".
	_	_	_]	_	_	_	_	_	0	This is the interface to display the variety of NC data on GOT connected to the CNC CPU. This reads out the running machining program No., the running machining program and the coordinate values, etc. by the device read command.
				_			_	_	0	This function enables the recorded data by the data sampling function of the NC to display with a graph on the GOT, and to store the data as a file.

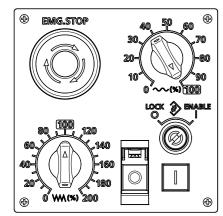
(Note 1) The software sold separately is necessary. (Note 3) This tool is free of charge. Please contact us.

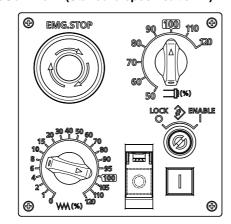
CNC SYSTEM


CNC SYSTEM HARDWARE


		[mm]
	Machine operation pane	el
FCU8-KB921 FCU8-KB923 Standard specification A	Key switch: 55 points, LED: 55 points	KB921/922/925: 260 KB923/924/926: 290
FCU8-KB925 FCU8-KB926 Standard specification B	MIŤSUBISHI ståndard key layout	140
FCU8-KB922 FCU8-KB924	Key switch: 55 points, LED: 55 points Custom specification key layout	********
FCU8-KB931 Standard specification A	Rotary switch (Spindle override, cutting override)	140
FCU8-KB941 Standard specification B	Selective switch (memory protection) Emergency stop button	140

■ Machine operation panel Key layout


FCU8-KB921/923 (Standard specification A)


FCU8-KB925/926 (Standard specification B)

FCU8-KB931 (Standard specification A)

FCU8-KB941 (Standard specification B)

Display	Keyboard	M800W Series	M800S Series	M80W Series	M80 Series	E80 Series
19-type Touchscreen	-	365 Windows based	_	365 Windows based	_	_
19-type, horizontal Touchscreen	-	440 Windows based	_	440 Windows based	_	_
15-type Touchscreen	FCU8-KB083 Clear key Full keyboard	400 Windows- 320 based display can be selected	320	400 Windows- ased display can be selected	320 140	_
10.4-type Touchscreen	FCU8-KB047 Clear key Full keyboard	290	290	290	290	_
10.4-type Touchscreen	FCU8-KB041 Clear key ONG(XZF) layout for L system FCU8-KB046 Clear key ONG(XYZ) layout	290 140	290 140	290 140	290 140	_
10.4-type Touchscreen	FCU8-KB048 Clear key ABC layout	290 230	290 230	290 230	290 230	_
8.4-type	FCU8-KB026 Clear key ONG(XYZ) layout FCU8-KB028 Clear key ONG(XZF) layout for L system	_	_	260 140	260 140	_
8.4-type	FCU8-KB029 Clear key ONG layout	_	_	260	260	_
8.4-type	FCU8-KB025 Sheet keys ONG(XZF) layout for L system FCU8-KB024 Sheet keys ONG(XZF) layout	_	_	_	_	260 140

CNC SYSTEM CONTROL UNIT/DISPLAY UNIT

[M800/M80 Series]

■Display unit/control unit separated-type

CNC System

Series	Model name	System type	NC control unit
M800W Series	M850W	FCA850U	FCU8-MA041-001
IVIOUUVV Series	M830W	FCA830U	FCU8-MU042-001
M80W Series	M80W	FCA80U	FCU8-MU044-001

Display unit

Classifi	cation	Туре	Remarks	Supporte M800	ed Series M80W
	19-type vertical color	FCU8-DU191-75		0	-
	LCD touchscreen	FCU8-DU191-77		-	0
Windows-based	19-type horizontal	FCU8-DU192-75	Personal computer (FCU8-PC231) and built-in disk unit (FCU8-CF001-001) are prepared at the	0	-
display unit	color LCD touchscreen	FCU8-DU192-77	same time.	-	0
	15-type color LCD	FCU8-DU181-34		0	-
	touchscreen	FCU8-DU181-36		-	0
	15-type color LCD	D FCU8-DU181-31		0	-
	touchscreen	FCU8-DU181-32		-	0
non-Windows-based display unit	10.4-type color LCD	FCU8-DU141-31	Graphic control unit (FCU8-GC211-001) is prepared at the same time.	0	-
	touchscreen	FCU8-DU141-32		-	0
	8.4-type color LCD			-	0

■Display unit/control unit integrated-type

Series	Model name	System type	NC control unit	Display unit
	M850S	FCA850H-8S	FCU8-MA542-001	FCU8-DU181-31 (15-type color LCD touchscreen)
M800S Series	IVIOSOS	FCA850H-4S	FC06-WA342-001	FCU8-DU141-31 (10.4-type color LCD touchscreen)
IVIOUUS Series	M830S	FCA830H-8S	- FCU8-MU542-001	FCU8-DU181-31 (15-type color LCD touchscreen)
	INIBOUS	FCA830H-4S	FC08-W0542-001	FCU8-DU141-31 (10.4-type color LCD touchscreen)
		FCA80H-8A		FCU8-DU181-32 (15-type color LCD touchscreen)
	М80 ТуреА	FCA80H-4A	FCU8-MU512-001	FCU8-DU141-32 (10.4-type color LCD touchscreen)
M80 Series		FCA80P-2A		FCU8-DU121-12 (8.4-type color LCD)
M80 Series		FCA80H-8B		FCU8-DU181-32 (15-type color LCD touchscreen)
	М80 ТуреВ	FCA80H-4B	FCU8-MU511-001	FCU8-DU141-32 (10.4-type color LCD touchscreen)
		FCA80P-2B		FCU8-DU121-12 (8.4-type color LCD)
ESO Corios	E80 TypeA	FCA80P-2EA	FCU8-MU514-001	FCU8-DU121-13(8.4-type color LCD)
E80 Series	E80 TypeB	FCA80P-2EB	FCU8-MU513-001	FCU8-DU121-13(8.4-type color LCD)

[C80 Series]

■CNC-CPU unit

Product	Model	Remarks
CNC control module	R16NCCPU-S1	

■GOT2000 related unit

SD card

Product	Model	Model code	Remarks
SD card	NZ1MEM-2GBSD	1WC535	2GB SD memory card for GOT

GT27 Model

Pr	oduct	Model	Model code	Remarks
	GT2715	GT2715-XTBA	1EA790	15" XGA [1024x768 dots] TFT color LCD 65536 colors (Multimedia & Video/RGB compliant Multi-touch compliant) 100 to 240VAC, User memory Memory for storage (ROM): 57MB, Memory for operation (RAM): 128MB GT Designer3 Version (GOT2000) 1.117X or later is required.
	GT2712	GT2712-STBA	1EA780	12.1** SVGA [800x600 dots] TFT color LCD 65536 colors (Multimedia & Video / RGB compliant Multi-touch compliant) 100 to 240VAC, User memory Memory for storage (ROM): 57MB, Memory for operation (RAM): 128MB GT Designer3 Version1 (GOT2000) 1.155M or later is required.
	G12712	GT2712-STBD	1EA781	12.1*" SVGA [800x600 dots] TFT color LCD 65536 colors (Multimedia & Video / RGB compliant Multi-touch compliant) 24VDC, User memory Memory for storage (ROM): 57MB, Memory for operation (RAM): 128MB GT Designer3 Version1 (GOT2000) 1.155M or later is required.
	GT2710	GT2710-STBA	1EA770	10.4" SVGA [800x600 dots] TFT color LCD 65536 colors (Multimedia & Video / RGB compliant Multi-touch compliant) 100 to 240VAC, User memory Memory for storage (ROM): 57MB, Memory for operation (RAM): 128MB GT Designer3 Version1 (GOT2000) 1.155M or later is required.
	G12/10	GT2710-STBD	1EA771	10.4" SVGA [800x600 dots] TFT color LCD 65536 colors (Multimedia & Video / RGB compliant Multi-touch compliant) 24VDC, User memory Memory for storage (ROM): 57MB, Memory for operation (RAM): 128MB GT Designer3 Version1 (G
GT27	OT0700	GT2708-STBA	1EA740	8.4" SVGA [800x600 dots] TFT color LCD 65536 colors (Multimedia & Video / RGB compliant Multi-touch compliant) 100 to 240VAC, User memory Memory for storage (ROM): 57MB, Memory for operation (RAM): 128MB GT Designer3 Version1 (GOT2000) 1.155M or later is required.
Model	GT2708	GT2708-STBD	1EA741	8.4*" SVGA [800×600 dots] TFT color LCD 65536 colors (Multimedia & Video / RGB compliant Multi-touch compliant) 24VDC, User memory Memory for storage (ROM): 57MB, Memory for operation (RAM): 128MB GT Designer3 Version1 (G
	070740	GT2710-VTBA	1EA760	10.4"* VGA [640×480 dots] TFT color LCD 65536 colors (Multimedia & Video / RGB compliant Multi-touch compliant) 100 to 240VAC, User memory Memory for storage (ROM): 57MB, Memory for operation (RAM): 128MB GT Designer3 Version1 (GOT2000) 1.165X or later is required.
	GT2710	GT2710-VTBD	1EA761	10.4"* VGA [640×480 dots] TFT color LCD 65536 colors (Multimedia & Video / RGB compliant Multi-touch compliant) 24VDC, User memory Memory for storage (ROM): 57MB, Memory for operation (RAM): 128MB GT Designer3 Version1 (G
		GT2708-VTBA	1EA730	8.4" VGA [640×480 dots] TFT color LCD 65536 colors (Multimedia & Video / RGB compliant Multi-touch compliant) 100 to 240VAC, User memory Memory for storage (ROM): 57MB, Memory for operation (RAM): 128MB GT Designer3 Version1 (GOT2000) 1.165X or later is required.
	GT2708	GT2708-VTBD	1EA731	8.4" VGA [640×480 dots] TFT color LCD 65536 colors (Multimedia & Video / RGB compliant Multi-touch compliant) 24VDC, User memory Memory for storage (ROM); 57MB, Memory for operation (RAM): 128MB GT Designer3 Version1 (GOT2000) 1.165X or later is required.
	GT2705	GT2705-VTBD	1EA721	5.7" VGA [640×480 dots] TFT color LCD 65536 colors (Multi-touch compliant) 24VDC, User memory Memory for storage (ROM): 32MB, Memory for operation (RAM): 80MB GT Designer3 Version1 (GOT2000) 1.165X or later is required.
	•	GT27-15PSCC	1EK313	Surface treatment: anti-glare, Sheet color: transparent, USB environmental protection cover area: open, Number of sheets included in a set: 5
Protective	abaat	GT25-12PSCC	1EK307	For 12.1"" Clear type, Transparent, With a hole for the USB environmental protection cover, A set of 5 sheets.
FIOLECTIVE	SHEEL	GT25-10PSCC	1EK304	For 10.4"" Clear type, Transparent, With a hole for the USB environmental protection cover, A set of 5 sheets.
		GT25-08PSCC	1EK301	For 8.4" Clear type, Transparent, With a hole for the USB environmental protection cover, A set of 5 sheets.
		GT25-05PSCC	1EK316	For 5.7" Clear type, Transparent, With a hole for the USB environmental protection cover, A set of 5 sheets.

GT25 Model

Pr	roduct	Model	Model code	Remarks
	GT2512	GT2512-STBA	1EA580	12.1" SVGA [800×600 dots] TFT color LCD 65536 colors 100 to 240VAC, User memory Memory for storage (ROM): 32MB, Memory for operation (RAM): 80MB GT Designer3 Version1 (GOT2000) 1.155M or later is required.
	G12512	GT2512-STBD	1EA581	12.1" SVGA [800×600 dots] TFT color LCD 65536 colors 24VDC, User memory Memory for storage (ROM): 32MB, Memory for operation (RAM): 80MB GT Designer3 Version1 (GOT2000) 1.155M or later is required.
	OT0540	GT2510-VTBA	1EA560	10.4** VGA [640x480 dots] TFT color LCD 65536 colors 100 to 240VAC, User memory Memory for storage (ROM): 32MB, Memory for operation (RAM): 80MB GT Designer3 Version1 (GOT2000) 1.165X or later is required.
GT25 Model	GT2510	GT2510-VTBD	1EA561	10.4" VGA [640x480 dots] TFT color LCD 65536 colors 24VDC, User memory Memory for storage (ROM): 32MB, Memory for operation (RAM): 80MB GT Designer3 Version1 (GOT2000) 1.165X or later is required.
	070500	GT2508-VTBA	1EA530	8.4" VGA [640×480 dots] TFT color LCD 65536 colors 100 to 240VAC, User memory Memory for storage (ROM): 32MB, Memory for operation (RAM): 80MB GT Designer3 Version1 (GOT2000) 1.165X or later is required.
	GT2508	GT2508-VTBD	1EA531	8.4" VGA [640×480 dots] TFT color LCD 65536 colors 24VDC, User memory Memory for storage (ROM): 32MB, Memory for operation (RAM): 80MB GT Designer3 Version1 (GOT2000) 1.165X or later is required.
	GT25 Handy	GT2506HS-VTBD	09J922	Display section: 6.5" VGA, TFT color LCD, 65536 colors, panel color: black, power supply: 24VDC GT Works3 Version1.195D or later.

CNC SYSTEM I/O UNIT AND OTHERS

[M800/M80/E80 Series]

■List of Units

5 CNC SYSTEM

cation	Type	Remarks	Moone		orted S		
Jnit1	1,7,84		M800W	M800S	M80W	M80	E80
n ing	FCU8-DX830	Dl: 64-points 24V/0V common type, DO: 64-points source type, Manual pulse generator input: 3ch, Remote I/O 2.0 VF, RIO occupied stations (fixed): 1 to 4 and 7 to 14, 20 to 22, RIO extensible stations: 5. 6. 15 to 19. 23 to 64 (For Windows-based display unit)	0	-	0	-	-
DO Source output	FCU8-DX730	Dl: 64-points 24V/0V common type, DO: 64-points source type, Manual pulse generator input: 3ch, Remote I/O 2.0 VF, RIO occupied stations (fixed): 1, 2 and 7 to 12, 20 to 22, RIO extensible stations: 3 to 6 and 15 to 19, 23 to 64 (For non-Windows-based display unit)	0	-	0	-	-
DO Source output	FCU8-DX750	input: 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO extensible stations: 4 to 6 and 13 to 19, 23 to 64	-	0	-	0	0
	FCU8-DX760	input: 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RIO extensible stations: 5, 6 and 13 to 19, 23 to 64	-	0	-	0	0
DO Source output AO Analog output	FCU8-DX731	Manual pulse generator input: 2ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1, 3, 7 to 12, 20 to 22, RIO extensible stations: 2, 4 to 6, 13 to 19, 23 to 64	-	0	-	0	0
DO Source output	FCU8-DX837	Di. 64-points 24-VV common type, Do. 64-points source type, Salety Di. 6-points ov common type, Manual pulse generator input: 3ch, Remote I/O 2.0 VF, RIO occupied stations (fixed): 1 to 4 and 7 to 14, 20 to 22, RIO extensible stations: 5, 6 and 15 to 19, 23 to 64 (For Windows-based display unit)	0	-	0	-	-
DO Source output AO Analog output	FCU8-DX761	DI: 96-points 24V/OV common type, DO: 64-points source type, AI: 1 point, AO: 1 point, Manual pulse generator input: 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 to 5 and 7 to 12, 20 to 22, RIO extensible stations: 6 and 13 to 19, 23 to 64	-	0	-	0	0
DO Source output Scan output	FCU8-DX834	64 points, Manual pulse generator input: 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 to 4, 7 to 14, 20 to 22, RIO extensible stations: 5, 6, 15 to 19, 23 to 64 (for windows-based display) DI: 64-points 24V/OV common type, DO: 64-points source type, Scan input: 64 points, Scan	0	-	0	-	-
		stations (fixed): 1 to 4, 7 to 14, 20 to 22, RIO extensible stations: 5, 6, 15 to 19, 23 to 64		L		Ľ	Ľ
	FOLUE 51	Dt: 32-points 24V/0V common type. DO: 32-points source type	_	-	_	-	
DO Source output		Number of occupied stations: 1 DI: 64-points 24V/0V common type, DO: 48-points source type,	_		-		0
DO Source output					-		-
AO Analog output	FCU8-DX231 FCU8-DX202	Number of occupied stations: 2 Al: 4 points, AO: 1 point,	0	0	0		0
	FCUID DV010	DI: 16-points 0V common type (3mA/point), DO: 8-points source type (2A/point),					-
DO Source output (large capacity)	FCU8-DX213 FCU8-DX213-1	Number of occupied stations: 1 DI: 16-points OV common type (9mA/point), DO: 8-points source type (2A/point),	0	0	0	0	0
vointe)	ECLIS DV408	Thermistor input: 12 points					0
		Number of occupied stations: 3 Multi-analog input: 4 points * Voltace input: 4 points * Voltace input: current input, thermocouple input and resistance temperature detector input					
ioints)	FCU8-DX409	are selected for each CH. Number of occupied stations: 4	0	0	0	0	0
Safety DO Source output	FCU8-DX654	Safety DO: 4-points source type (2A/point) Number of occupied stations: 2	0	0	0	0	-
	FCU8-DX654-1	Safety DO: 4-points source type (2A/point) Number of occupied stations: 2	0	0	0	0	-
Safety relay output	FCU8-DX651	Dr. 32-points 24/04 continuit type, Do. 32-points source type, catety br. 3-points of common type, Safety relay: 4-points (non-voltage contact), Relay contact welding detection Number of occupied stations: 3	0	0	0	0	_
ansion unit	FCU8-EX133	Smart Safety observation	-	-	-	0	-
Jnit] e generator)		Encoder input 1ch					
	=========						1
	FCU8-EX544	5V manual pulse generator input 2ch	0	-	0	-	-
nit	FCU8-EX561	5V manual pulse generator input 2ch CC-Link 1ch	0	0	0	0	- 0
		5V manual pulse generator input 2ch	0	0	0	0	0
nit er unit	FCU8-EX561 FCU8-EX563 FCU8-EX564	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link IE Field 2ch	0	0	0	0 0	0
nit	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX568	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link IE Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) FL-net 1ch (Only LAN1, LAN2 cannot be used)	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
nit er unit adapter unit	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX568 FCU8-EX568	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link IE Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) Ft-net 1ch (Only LAN1, LAN2 cannot be used) For function expansion unit 1slot (*1)	0 0	0 0 0 0 0 0	0 0 0 0 -	0 0 0 0 0	0 0 0 0
nit er unit adapter unit	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX568	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link IE Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) FL-net 1ch (Only LAN1, LAN2 cannot be used)	0 0 0 0 -	0 0 0	0 0 0	0 0 0	0 0 0
nit er unit adapter unit	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX565 FCU8-EX702 FCU8-EX703	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link IE Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) Ft-net 1ch (Only LAN1, LAN2 cannot be used) For function expansion unit 1slot (*1) For function expansion unit 2slots (*1) Vibration cutting control SDHC 1ch, USB2.0 1ch USB communication (between side memory I/F PCB and personal	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0
nit or unit adapter unit	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX568 FCU8-EX702 FCU8-EX703 FCU8-EX744	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link IE Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) FL-net 1ch (Only LAN1, LAN2 cannot be used) For function expansion unit 1slot (*1) For function expansion unit 2slots (*1) Vibration cutting control	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0
nit er unit adapter unit nsion unit tor] erator	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX568 FCU8-EX702 FCU8-EX703 FCU8-EX744 FCU8-EP201-2	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link E Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) FL-net 1ch (Only LAN1, LAN2 cannot be used) For function expansion unit 1slot ("1) For function expansion unit 2slots ("1) Vibration cutting control SDHC 1ch, USB2.0 1ch USB communication (between side memory I/F PCB and personal computer) Unit lid (resin molded article), metal plate, etc. Exclusive for 19-type display unit Input 5VDC, 100pulse/rev	0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 -
nit or unit adapter unit nsion unit	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX568 FCU8-EX702 FCU8-EX703 FCU8-EX744	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link E Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) FL-net 1ch (Only LAN1, LAN2 cannot be used) For function expansion unit 1slot ("1) For function expansion unit 2slots ("1) Vibration cutting control SDHC 1ch, USB2.0 1ch USB communication (between side memory I/F PCB and personal computer) Unit lid (resin molded article), metal plate, etc. Exclusive for 19-type display unit	0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 -
nit adapter unit nsion unit tor] rator nerator	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX702 FCU8-EX703 FCU8-EX703 FCU8-EX744 FCU8-EP201-2 UFO-01-2Z9 HD60C	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link E Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) FL-net 1ch (Only LAN1, LAN2 cannot be used) Fl-net 1ch (Only LAN1, LAN2 cannot be used) For function expansion unit 1slot ("1) For function expansion unit 2slots ("1) Vibration cutting control SDHC 1ch, USB2.0 1ch USB communication (between side memory I/F PCB and personal computer) Unit lid (resin molded article), metal plate, etc. Exclusive for 19-type display unit Input 5VDC, 100pulse/rev Input 12VDC, 25 pulse/rev Input 5VDC, 1024 pulse/rev, 6000r/min, 68-square flange	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0
nit er unit adapter unit nsion unit tor] erator	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX568 FCU8-EX702 FCU8-EX703 FCU8-EX744 FCU8-EP201-2 UFO-01-229 HD60C	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link E Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) FL-net 1ch (Only LAN1, LAN2 cannot be used) FC-runction expansion unit 1slot ("1) For function expansion unit 2slots ("1) Vibration cutting control SDHC 1ch, USB2.0 1ch USB communication (between side memory I/F PCB and personal computer) Unit lid (resin molded article), metal plate, etc. Exclusive for 19-type display unit Input 5VDC, 100pulse/rev Input 12VDC, 25 pulse/rev	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 -
nit adapter unit nsion unit tor] rator nerator	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX568 FCU8-EX702 FCU8-EX703 FCU8-EX744 FCU8-EP201-2 UFO-01-229 HD60C	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link IE Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) FL-net 1ch (Only LAN1, LAN2 cannot be used) FC-runction expansion unit 1slot (*1) For function expansion unit 1slot (*1) Vibration cutting control SDHC 1ch, USB2.0 1ch USB communication (between side memory I/F PCB and personal computer) Unit lid (resin molded article), metal plate, etc. Exclusive for 19-type display unit Input 5VDC, 100pulse/rev Input 12VDC, 25 pulse/rev Input 5VDC, 1024 pulse/rev, 6000r/min, 68-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 68-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 160-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 160-square flange	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 -
nit adapter unit nsion unit tor] rator nerator	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX568 FCU8-EX702 FCU8-EX703 FCU8-EX704 FCU8-EP201-2 UFO-01-229 HD60C OSE1024-3-15-68-8 OSE1024-3-15-68-8 OSE1024-3-15-68-8	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link IE Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) Ft-net 1ch (Only LAN1, LAN2 cannot be used) For function expansion unit 1slot (*1) For function expansion unit 2slots (*1) Vibration cutting control SDHC 1ch, USB2.0 1ch USB communication (between side memory I/F PCB and personal computer) Unit lid (resin molded article), metal plate, etc. Exclusive for 19-type display unit Input 5VDC, 100pulse/rev Input 12VDC, 25 pulse/rev Input 5VDC, 1024 pulse/rev, 6000r/min, 68-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 160-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 160-square flange	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
nit runit adapter unit runit r	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX565 FCU8-EX702 FCU8-EX703 FCU8-EX704 FCU8-EP201-2 UFO-01-2Z9 HD60C OSE1024-3-15-68-8 OSE1024-3-15-160 HG1TS812UHMK1346-L5 PT3C-51F-M2 10P	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link IE Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) Ft-net 1ch (Only LAN1, LAN2 cannot be used) For function expansion unit 1slot (*1) For function expansion unit 2slots (*1) Vibration cutting control SDHC 1ch, USB2.0 1ch USB communication (between side memory I/F PCB and personal computer) Unit lid (resin molded article), metal plate, etc. Exclusive for 19-type display unit Input 5VDC, 100pulse/rev Input 12VDC, 25 pulse/rev Input 5VDC, 1024 pulse/rev, 6000r/min, 68-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 160-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 160-square flange	0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	
nit er unit adapter unit nsion unit tor] prator perator perator coder	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX568 FCU8-EX702 FCU8-EX703 FCU8-EX744 FCU8-EP201-2 UFO-01-2Z9 HD60C OSE1024-3-15-68 OSE1024-3-15-68-8 OSE1024-3-15-160 HG1T-S812UHMK1346-L5 FCU8-SD001G	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link IE Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) Ft-net 1ch (Only LAN1, LAN2 cannot be used) For function expansion unit 1slot (*1) For function expansion unit 2slots (*1) Vibration cutting control SDHC 1ch, USB2.0 1ch USB communication (between side memory I/F PCB and personal computer) Unit lid (resin molded article), metal plate, etc. Exclusive for 19-type display unit Input 5VDC, 100pulse/rev Input 12VDC, 25 pulse/rev Input 5VDC, 1024 pulse/rev, 6000r/min, 68-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 160-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 160-square flange	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
nit or unit adapter unit ada	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX568 FCU8-EX702 FCU8-EX703 FCU8-EX744 FCU8-EP201-2 UFO-01-2Z9 HD60C OSE1024-3-15-68 OSE1024-3-15-68-8 OSE1024-3-15-160 HG1T-S812UHMK1346-L5 FCU8-SD001G	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link E Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) FL-net 1ch (Only LAN1, LAN2 cannot be used) FC-Income expansion unit 1slot (*1) For function expansion unit 1slot (*1) Vibration cutting control SDHC 1ch, USB2.0 1ch USB communication (between side memory I/F PCB and personal computer) Unit lid (resin molded article), metal plate, etc. Exclusive for 19-type display unit Input 5VDC, 100pulse/rev Input 12VDC, 25 pulse/rev Input 5VDC, 1024 pulse/rev, 6000r/min, 68-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 160-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 160-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 160-square flange	0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
nit er unit adapter unit nsion unit tor] erator erator erator did inisuBisHi CNC 1GB	FCU8-EX561 FCU8-EX563 FCU8-EX564 FCU8-EX565 FCU8-EX568 FCU8-EX702 FCU8-EX703 FCU8-EX703 FCU8-EX704 FCU8-EP201-2 UFO-01-2Z9 HD60C OSE1024-3-15-68-8 OSE1024-3-15-68-8 OSE1024-3-15-68-8 OSE1024-3-15-68-8 OSE1024-3-15-68-8 FCU8-EX704	5V manual pulse generator input 2ch CC-Link 1ch PROFIBUS-DP 1ch CC-Link IE Field 2ch EtherNet/IP 1ch (Only LAN1, LAN2 cannot be used) Ft-net 1ch (Only LAN1, LAN2 cannot be used) For function expansion unit 1slot (*1) For function expansion unit 2slots (*1) Vibration cutting control SDHC 1ch, USB2.0 1ch USB communication (between side memory I/F PCB and personal computer) Unit lid (resin molded article), metal plate, etc. Exclusive for 19-type display unit Input 5VDC, 100pulse/rev Input 12VDC, 25 pulse/rev Input 5VDC, 1024 pulse/rev, 6000r/min, 68-square flange Input 5VDC, 1024 pulse/rev, 6000r/min, 160-square flange	0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0	
	AO Analog output DO Source output DO Source output AO Analog output DO Source output DO Source output DO Source output AO Analog output DO Source output AO Analog output AO Analog output DO Source output (large capacity) coints) Safety DO Source output (large capacity) DO Source output safety relay output DO Source output safety relay output	FCU8-DX830	DO Source output DO Source output FCU8-DX30 DO Source output FCU8-DX71 DO Source output FCU8-DX72 DO Source output FCU8-DX73 DO Source output FCU8-DX73 DO Source output FCU8-DX74 DO Source output FCU8-DX75 DO Source output FCU8-DX75 DO Source output FCU8-DX76 FCU8-DX76 DO Source output FCU8-DX76 DO Source output FCU8-DX76 FCU8-DX76 DO Source output FCU8-DX76 FCU8-DX76 FCU8-DX76 DO Source output FCU8-DX76 FCU8-DX76 FCU8-DX76 FCU8-DX76 FCU8-DX76 FCU8-DX76 DO Source output FCU8-DX76 FCU8-DX83 FCU8-DX83 FCU8-DX86 FCU8-DX86 FCU8-DX86 FCU8-DX87 FCU8-DX87 FCU8-DX87 FCU8-DX86 FCU8-DX87 FCU8-DX86 FCU8-DX86 FCU8-DX87 FCU8-DX86 FCU8-DX87 FCU8-DX87 FCU8-DX87 FCU8-DX87 FCU8-DX87 FCU8-DX86 Dicease Dice	PCU8-DX830 Dic 64-points 24V/OV common type, DC: 64-points source type, Manual pulse generator input: 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 4 and 7 to 14, 20 to 22, RIO points 24V/OV common type, DC: 64-points source type, Manual pulse generator input: 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 4 and 7 to 14, 20 to 22, RIO points source type, Manual pulse generator input: 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 3 and 7 to 12, 20 to 22, RIO points source type, Manual pulse generator input: 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 3 and 7 to 12, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 4 and 7 to 12, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 4 and 7 to 12, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 4 and 7 to 12, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 4 and 7 to 12, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 4 and 7 to 12, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 4 and 7 to 12, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 4 and 7 to 12, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 12, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 12, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 10, 20 F, RIO occupied stations (fixed): 1 of 19, 20 to 64 points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 19, 20 to 64 points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 19, 20 to 64 points, Scan output and 1 to 12, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 10, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO occupied stations (fixed): 1 of 10, 20 to 22, RIO points 3ch, Remote I/O 2.0 I/F, RIO o	FCUB-DX830 TeQues Dit. 64-points 24V/IV common type, DO: 64-points source type, Manual pulse generator pupt. 3ch, Remote IV 2.0 In F, RIO occupied stations (fixed): 1 to 4 and 7 to 14, 20 to 22, RIO Dis. 64-points 24V/IV common type, DO: 64-points source type, Manual pulse generator pupt. 3ch, Remote IV 2.0 In F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations Rived): 1 to 3 and 7 to 12, 20 to 22, RIO determined Co. 20 In F, RIO occupied stations Rived): 1 to 3 and 7 to 12, 20 to 22, RIO determined Rived; 1 to 3 and 7 to 12, 20 to 22, RIO determined Rived; 1 to 3 and 7 to 12, 20 to 22, RIO determined Rived; 1 to 3 and 7 to 12, 20 to 24, RIO determined Rived; 1 to 3 and 7 to 12, 20 to 24, RIO determined Rived; 1 to 3 and 7 to 12, 20 to 24, RIO determined Rived; 1 to 3 and 7 to 12, 20 to 24, RIO determined Rived; 1 to 3 and 7 to 12, 20 to 24, RIO determined Rived; 1 to 3 and 7 to 12, 20 to	FCUB-DX30 Dit 64-points 24V/IV common type, D.O. 64-points source type, Menual pulse generator input. 3ch, Remote IV 2.0 If; RiO cocupied stations (fixed): 1 to 4 and 7 to 14, 20 to 22, RiO 0 - 0 - 1 (64-points 24V/IV common type, D.O. 64-points source type, Menual pulse generator input. 3ch, Remote IV 0.2 Uf; RiO cocupied stations (fixed): 1 to 4 and 7 to 14, 20 to 22, RiO 0 - 0 - 1 (64-points 24V/IV common type, D.O. 64-points source type, Menual pulse generator input. 3ch, Remote IV 0.2 Uf; RiO cocupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RiO 0 - 0 - 0 extensible stations: 3 to 6 and 15 to 19, 23 to 64 (fir) non-Windows-based display unit) Dis 64-points 24V/IV common type, D.O. 64-points Source type, Manual pulse generator input. 3ch, Remote IV 0.2 Uf; RiO cocupied stations (fixed): 1 to 3 and 7 to 12, 20 to 22, RiO 0 extensible stations: 4 to 6 and 15 to 19, 23 to 64 (70 to 12, 20 to 22, RiO 0 extensible stations: 4 to 6 and 15 to 19, 23 to 64 (70 to 12, 20 to 22, RiO 0 extensible stations: 4 to 6 and 15 to 19, 23 to 64 (70 to 12, 20 to 22, RiO 0 extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO 0 extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO 0 extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO 0 extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO 0 extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO 0 extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO 0 extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO 0 extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO 0 extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO extensible stations (fixed): 1 to 4 and 7 to 12, 20 to 22, RiO exten	

DI: Digital input signals, DO: Digital output signals, AI: Analog input signals, AO: Analog output signals ('1) This is required when FCU8-EX56x/FCU8-EX744 is used in M800S/M80 series.

[C80 Series]

MELSEC iQ-R Series modules

	duct	Model R04CPU	Model code 1FMA00	Remarks Program capacity, 40K steps; basic operation processing speed (LD instruction), 0.98 ns
		R08CPU	1FMA01	Program capacity, 80K steps; basic operation processing speed (LD instruction), 0.98 ns
PLC CPU		R16CPU	1FMA01	Program capacity, 80K steps; basic operation processing speed (LD instruction), 0.98 ns
		R32CPU	1FMA03	Program capacity, 320K steps; basic operation processing speed (LD instruction), 0.98 ns
		R120CPU	1FMA04	Program capacity, 1200K steps; basic operation processing speed (LD instruction), 0.98 ns
			_	
SD memory card		NZ1MEM-2GBSD	1WC535	SD memory card, 2G bytes
Extended SRAM	cassette	NZ2MC-1MBS	1FMB00	1M bytes
		R35B	1FME00	5 slots, for MELSEC iQ-R Series modules
Main base		R38B	1FME01	8 slots, for MELSEC iQ-R Series modules
		R312B	1FME02	12 slots, for MELSEC iQ-R Series modules
		R65B	1FME07	5 slots, for MELSEC iQ-R Series modules
Extension base		R68B	1FME06	8 slots, for MELSEC iQ-R Series modules
		R612B	1FME05	12 slots, for MELSEC iQ-R Series modules
		RQ65B	1FME08	5 slots, for MELSEC-Q Series modules
RQ extension bas	se	RQ68B	1FME03	8 slots, for MELSEC-Q Series modules
		RQ612B	1FME04	12 slots, for MELSEC-Q Series modules
		RC06B	1FM001	0.6 m cable for extension and RQ extension base units
Extension cable		RC12B	1FM002	1.2 m cable for extension and RQ extension base units
Extension odole		RC30B	1FM003	3 m cable for extension and RQ extension base units
		RC50B	1FM004	5 m cable for extension and RQ extension base units
		R61P	1FMC00	AC power supply; input, 100 to 240 V AC; output, 5 V DC/6.5 A
Power or look		R62P	1FMC02	AC power supply; input, 100 to 240 V AC; output, 5 V DC/3.5 A, 24 V DC/0.6 A
Power supply		R63P	1FMC01	DC power supply; input, 24 V DC; output, 5 V DC/6.5 A
		R64P	1FMC03	AC power supply; input, 100 to 240 V AC; output, 5 V DC/9 A
	AC	RX10	1FM103	AC input, 16 points; 100 to 120 V AC (50/60 Hz)
	DOD :: 0	RX40C7	1FM100	DC input, 16 points; 24 V DC, 7.0 mA
Input	DC(Positive Common/	RX41C4	1FM101	DC input, 32 points; 24 V DC, 4.0 mA
	Negative Common Shared Type)	RX42C4	1FM102	DC input, 64 points; 24 V DC, 4.0 mA
	onareu rype)	RX41C4-TS	1FM113	DC input, 32 points; 24VDC, 4.0mA, Spring clamp terminal block
	Dalas	RY10R2	1FM153	Relay output, 16 points; 24 V DC/2 A, 240 V AC/2 A
	Relay	RY18R2A	1FM15A	Relay output, 8 points; 24VDC/2A, 240VAC/2A
	Triac	RY20S6	1FM157	Triac output, 16 points; 100 to 240VAC/0.6A
		RY40NT5P	1FM150	Transistor (sink) output, 16 points; 12 to 24 V DC, 0.5 A
	Transistor	RY41NT2P	1FM151	Transistor (sink) output, 32 points; 12 to 24 V DC, 0.2 A
Output	(Sink)	RY42NT2P	1FM152	Transistor (sink) output, 64 points; 12 to 24 V DC, 0.2 A
		RY40PT5P	1FM154	Transistor (source) output, 16 points; 12 to 24 V DC, 0.5 A
	Transistor (Source)	RY41PT1P	1FM155	Transistor (source) output, 32 points; 12 to 24 V DC, 0.1 A
		RY42PT1P	1FM156	Transistor (source) output, 64 points; 12 to 24 V DC, 0.1 A
	(000.00)	RY41PT1P-TS	1FM15E	Transistor (source) output, 32 points; 12 to 24VDC, 0.1A, Spring clamp terminal block
	DC input/	111411 111-10	HIVITOL	DC input, 32 points; 24 V DC, 4.0 mA
I/O combined	transistor output	RH42C4NT2P	1FM200	Transistor (sink) output, 32 points; 12 to 24 V DC, 0.2 A
	transistor output	A6CON1	13L101	Soldering 32 point-connector (40-pin connector)
		A6CON2	13L102	Solderless terminal connection 32 point-connector (40-pin connector)
Connector				
		A6CON3 A6CON4	13L103	Flat-cable pressure displacement 32 point-connector (40-pin connector)
0	ala al lala al c		13L124	Soldering 32 point-connector (40-pin connector, bidirectional cable mountable)
Spring clamp tem	ninai biock	Q6TE-18SN	1W4299	For 16-point I/O modules, 0.3 to 1.5 mm² (2216 AWG)
Connector/termin	nal block	A6TBX70	13L112	For positive common input modules (3-wire type)
conversion modul	le	A6TBXY36	13L106	For positive common input modules and sink output modules (standard type)
		A6TBXY54	13L109	For positive common input modules and sink output modules (2-wire type)
		AC05TB	13L006	For A6TBXY36, A6TBXY54, and A6TBX70 (positive common/sink type), 0.5 m
Connector/		AC10TB	13L007	For A6TBXY36, A6TBXY54, and A6TBX70 (positive common/sink type), 1 m
terminal block		AC20TB	13L008	For A6TBXY36, A6TBXY54, and A6TBX70 (positive common/sink type), 2 m
conversion	cable	AC30TB	13L009	For A6TBXY36, A6TBXY54, and A6TBX70 (positive common/sink type), 3 m
module		AC50TB	13L010	For A6TBXY36, A6TBXY54, and A6TBX70 (positive common/sink type), 5 m
		AC80TB	13L026	For A6TBXY36, A6TBXY54, and A6TBX70 (positive common/sink type), 8 m* *Common current 0.5 A or lower
		AC100TB	13L027	For A6TBXY36, A6TBXY54, and A6TBX70 (positive common/sink type), 10 m* *Common current 0.5 A or lower
Relay terminal mo	odule	A6TE2-16SRN	13L131	For 40-pin connector 24 V DC transistor output modules (sink type)
		AC06TE	13L021	For A6TE2-16SRN, 0.6 m
Dolov tomical		AC10TE	13L022	For A6TE2-16SRN, 1 m
Relay terminal module	cable	AC30TE	13L023	For A6TE2-16SRN, 3 m
Hodulo		AC50TE	13L024	For A6TE2-16SRN, 5 m
		AC100TE	13L025	For A6TE2-16SRN, 10 m
	Voltage input	R60ADV8	1FM503	8 channels for voltage inputs -10 to 10 V DC, -32000 to 32000; 80 μs/CH
Analog input	Current input	R60ADI8	1FM504	8 channels for current inputs 0 to 20 mA DC/0 to 32000; 80 µs/CH
	Voltage/ current input	R60AD4	1FM501	4 channels for voltage/current inputs -10 to 10 V DC, -32000 to 32000; 0 to 20 mA DC, 0 to 32000; 80 µs/CH
		DOOD AV (O	1FM505	8 channels for voltage outputs -32000 to 32000, -10 to 10 V DC; 80 µs/CH
	Voltage output	R60DAV8		
Analog output	Voltage output Current output	R60DAI8	1FM506	8 channels for current outputs 0 to 32000, 0 to 20 mA DC; 80 µs/CH
Analog output				8 channels for current outputs
Analog output	Current output Voltage/ current output	R60DAI8	1FM506	8 channels for current outputs 0 to 32000, 0 to 20 mA DC; 80 µs/CH 4 channels for voltage/current outputs
Analog output	Current output Voltage/	R60DAI8 R60DA4 R60TCRT4	1FM506 1FM502 1FY40E	8 channels for current outputs 0 to 32000, 0 to 20 mA DC; 80 µs/CH 4 channels for voltage/current outputs -32000 to 32000, -10 to 10 V DC; 0 to 32000, 0 to 20 mA DC; 80 µs/CH RTD (Pt100, JPt100), 4 channels for input
Analog output Temperature control	Current output Voltage/ current output Platinum temperature-	R60DAI8	1FM506 1FM502	8 channels for current outputs 0 to 32000, 0 to 20 mA DC; 80 µs/CH 4 channels for voltage/current outputs -32000 to 32000, -10 to 10 V DC; 0 to 32000, 0 to 20 mA DC; 80 µs/CH

Pro	duct	Model	Model code	Remarks			
1		RD62P2	1FM50B	5/12/24 V DC input, 2 channels; counting speed, max. 200k pulse/s; external output, transistor (sink type)			
		RD62D2	1FM50C	Differential input, 2 channels; max. counting speed, 8M pulse/s; external output, transistor (sink type)			
		RD62P2E	1FM50D	5/12/24 V DC input, 2 channels; counting speed, max. 200k pulse/s; external output, transistor (source type)			
Ethernet		RJ71EN71	1FM601	1 Gbps/100 Mbps/10 Mbps, 2 ports Multi-network connectivity (Ethernet/CC-Link IE)			
		RJ71C24	1FM604	Max. 230.4 kbps; RS-232, 1 channel; RS-422/485, 1 channel			
Serial communica	ation	RJ71C24-R2 1FM605 Max. 230.4 kbps; RS-232, 2 channels		Max. 230.4 kbps; RS-232, 2 channels			
		RJ71C24-R4	1FM606	Max. 230.4 kbps; RS-422/485, 2 channels			
MES Interface		RD81MES96	1FTD00	1000BASE-T/100BASE-TX/10BASE-T Database connection (MX MESInterface-R is required)			
CC-Link IE Contro	ol	RJ71GP21-SX	1FM602	1 Gbps, fiber-optic cable, control/normal station			
CC-Link IE Field		RJ71GF11-T2	1FM600	1 Gbps, master/local station			
CC-Link		RJ61BT11	1FM603	Max. 10 Mbps, master/local station, CC-Link Ver.2 supported			
		AJ65SBTB1-16D	1W5131	Input 16 points: 24VDC (positive/negative common shared) 1-wire type Terminal block type Response time 1.5ms			
	Screw terminal	AJ65SBTB1-32D	1W5141	Input 32 points: 24VDC (positive/negative common shared) 1-wire type Terminal block type Response time 1.5ms			
CC-Link Remote I/O	block type	AJ65SBTB1-16TE	1W5128	Output 16 points: 12/24VDC (0.1A) Transistor output (source type) 1-wire type Terminal block type			
module		AJ65SBTB1-32TE1	1W5452	Output 32 points: 12/24VDC (0.5A) Transistor output (source type) 1-wire type Terminal block type			
TTOGGIG	Waterproof	AJ65FBTA4-16DE	1W5108	Input 24VDC (negative common) 4-wire type Thin, waterproof type Response time 1.5ms			
	connector type	AJ65FBTA2-16TE	1W5103	Output 16 points: 12/24VDC (1.0A) Transistor output (source type) 2-wire type Thin, waterproof type			

MELSEC Q Series modules

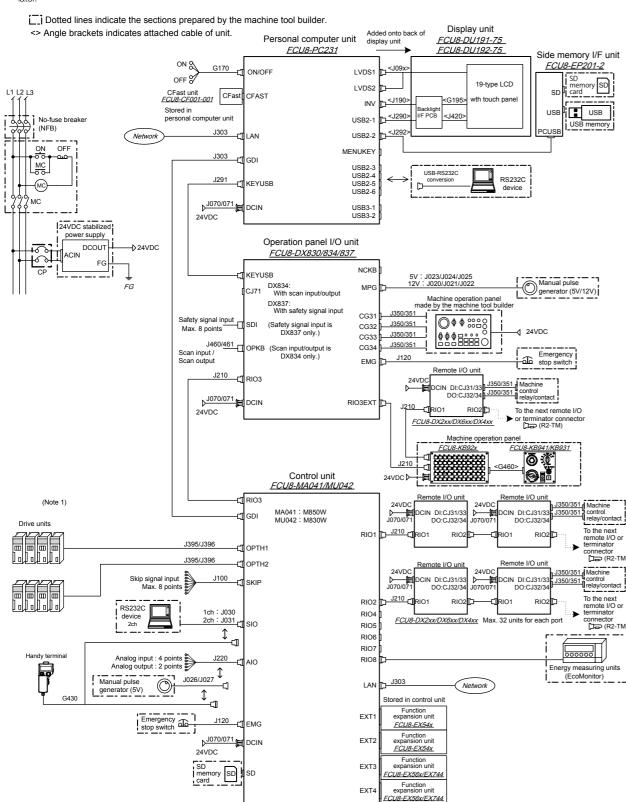
5 CNC SYSTEM

Product		Model	Model code	Remarks		
		Q63B	1W4E07	3 slots, 1 power supply module required, for Q Series modules		
			1W4E03	5 slots, 1 power supply module required, for Q Series modules		
Futoncian boso		Q68B	1W4E04	8 slots, 1 power supply module required, for Q Series modules		
Extension base		Q612B	1W4E05	12 slots, 1 power supply module required, for Q Series modules		
		Q52B	1W4E14	2 slots, power supply module not required, for Q Series modules		
		Q55B	1W4E15	5 slots, power supply module not required, for Q Series modules		
		QC05B	1W4006	0.45 m cable for connecting extension base unit		
		QC06B	1W4000	0.6 m cable for connecting extension base unit		
Extension cable	QC12B	1W4001	1.2 m cable for connecting extension base unit			
		QC30B		3m cable for connecting extension base unit		
		QC50B	1W4003	5m cable for connecting extension base unit		
		QC100B	1W4004	10m cable for connecting extension base unit		
		Q61P	1W4C11	Input voltage: 100 to 240 V AC, output voltage: 5 V DC, output current: 6A		
Power supply		Q63P	1W4C02	Input voltage: 24 V DC, output voltage: 5 V DC, output current: 6A		
		Q64PN	1W4C12	Input voltage: 100 to 240 V AC, output voltage: 5 V DC, output current: 8.5A		
Output	Transistor (Independent)	QY68A	1W4310	8 points, 5 to 24 V DC, 2 A/point, 8 A/module, response time: 10 ms, sink/source type, 18-point terminal block, with surge suppression, all points independent		
Analog output	Analog output Voltage/current output Q		1W4571	2 channels, input (resolution): 0 to 12000, -12000 to 12000, -16000 to 16000, output: -12 to 12 V DC, 0 to 22 mA DC, conversion speed: 10 ms/2 channels, 18-point terminal block, channel isolated		
MELSECNET/H	Optical loop (SI)	QJ71LP21-25	1W4516	SI/QSI/H-PCF/broadband H-PCF fiber optic cable, dual loop, control network (control/normal station) or remote I/O network (remote mater station)		
IVIELSEUNE I/H	Coaxial bus	QJ71BR11 1W4511		3C-2V/5C-2V coaxial cable, single bus, control network (control/normal station) or remote I/O network (remote master station)		
FL-net(OPCN-2)	Ver.2.00	QJ71FL71-T-F01	1W4593	10BASE-T, 100BASE-TX		
AS-I		QJ71AS92	1W4524	Master station, AS-Interface Specification Version 2.11 compatible		
DeviceNet		QJ71DN91	1W4518	Master station/local station combined use, for QCPU, DeviceNet(Release2.0) compatible.		

Peripheral unit

Product		Model	Remarks				
	Dual-signal modules	R173SXY	IO redundant monitoring module (Up to three modules)				
Dual sissal	Terminal block	FA-TBS40P	Terminal block conversion (separately prepared: Mitsubishi Electric Engineering) UL supported				
Dual signal module	Terminal block	FA-LTB40P	Terminal block conversion (separately prepared: Mitsubishi Electric Engineering)				
	Cable	FA-CBL□□FMV-M	Terminal block conversion connection cable (length □□= 05: 0.5m, 10: 1m, 20: 2m, 30: 3m, 50: 5m) (separately prepared: Mitsubishi Electric Engineering)				
Signal splitter		FCU7-HN387	Option (Necessary when manual pulse generator is used for two or three axes)				
FL-net (OPCN-2) Interface module		ER-1FL2-T	10BASE-T, 100BASE-TX				

Parts


Product Model		Remarks				
Manual pulse generator	UFO-01-2Z9	5V specification				
Iviai luai puise gerierator	HD60C	12V specification, for the operation board signal splitter connection, 12V power supply separately necessary				
	OSE 1024-3-15-68	6000 r/min, no straight type connector enclosed, new JIS key, 68 square flange				
Encoder	OSE 1024-3-15-68-8	8000 r/min, no straight type connector enclosed, 68 square flange				
	OSE 1024-3-15-160	6000 r/min, no straight type connector enclosed, new JIS key, 160 square flange				
Grounding plate	Grounding plate D	With cable clamp A(2)				
Grounding plate	Grounding plate E	With cable clamp B(1)				

■MEMO

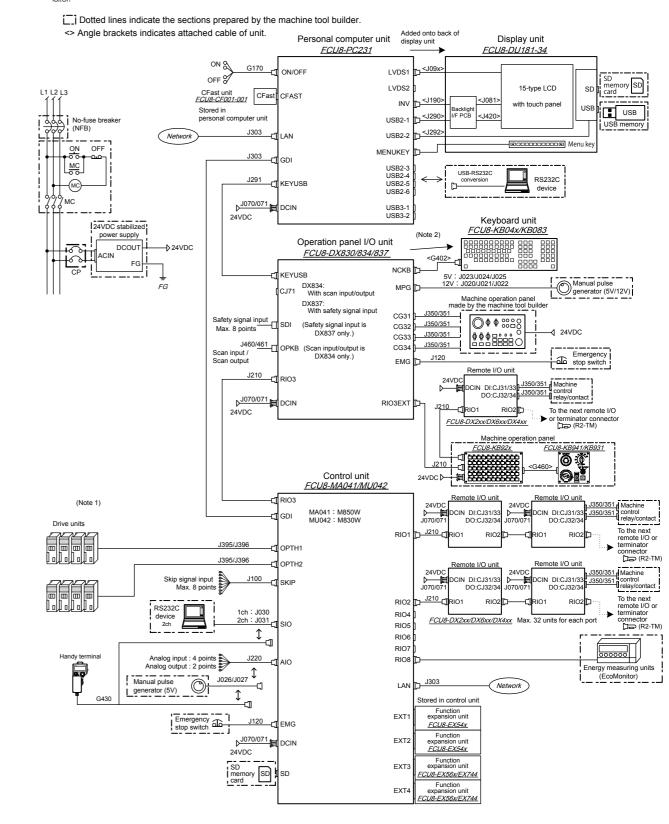
CNC SYSTEM GENERAL CONNECTION DIAGRAM

■M800W Series Windows-based display unit (19-type)

* For connecting a remote service gateway unit, refer to the "■M800W/M80W Series (Connection example of a remote service gateway unit)" described

(Note 1) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" described later. (Note 2) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later. (Note 3) Q6BAT can be connected to the control unit for backup use.

(Note 1) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" described later.

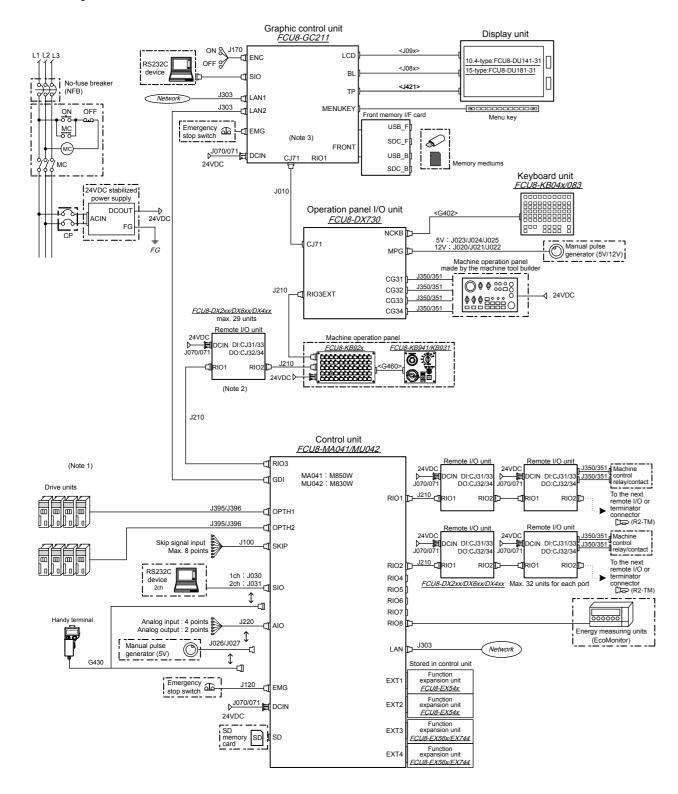

(Note 2) When using a keyboard unit, install the operation panel I/O unit on the back of the keyboard unit.

(Note 3) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later.

(Note 4) Q6BAT can be connected to the control unit for backup use.

■M800W Series Windows-based display unit (15-type)

* For connecting a remote service gateway unit, refer to the "■M800W/M80W Series (Connection example of a remote service gateway unit)" described



■M800W Series non-Windows-based display unit (10.4-type/15-type)

* For connecting a remote service gateway unit, refer to the "■M800W/M80W Series (Connection example of a remote service gateway unit)" described

Dotted lines indicate the sections prepared by the machine tool builder.

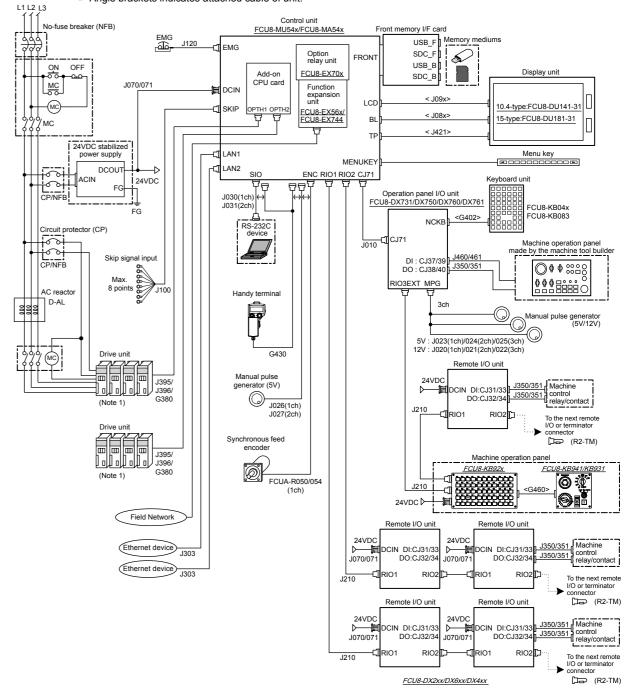
<> Angle brackets indicates attached cable of unit.

(Note 1) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" described later. (Note 2) When connecting a remote I/O unit to the 3rd RIO channel, insert it between the control unit and operation panel I/O unit.

(Note 3) There is no need to connect a terminator R2-TM to the graphic control unit.

(Note 4) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later.

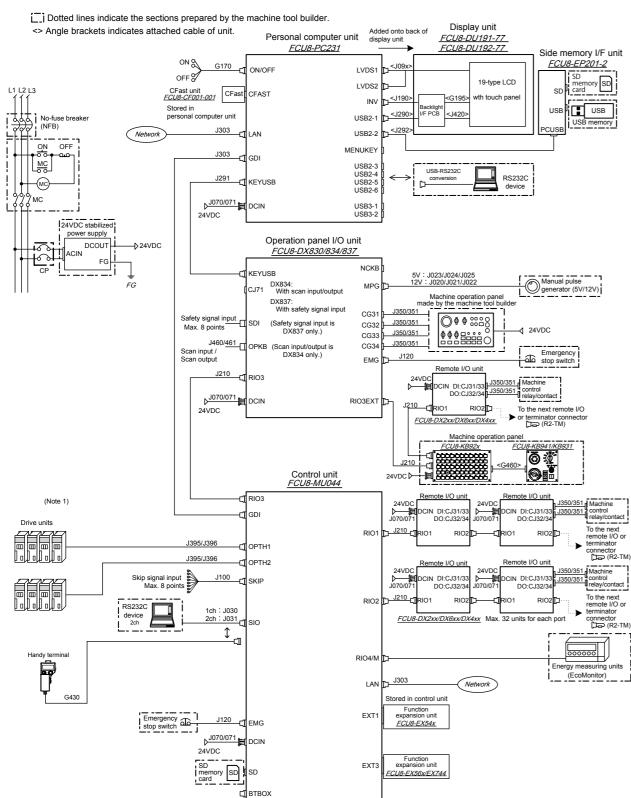
(Note 5) Q6BAT can be connected to the control unit or the graphic control unit for backup use.


■M800S Series

(Operation panel I/O unit: FCU8-DX731/DX750/DX760/DX761)

- * For connecting a remote service gateway unit, refer to the "
 M800S/M80/E80 Series (Connection example of a remote service gateway unit)" described
- * For an operation panel I/O unit with model number FCU8-DX834, refer to the "■M800S/M80/E80 Series (Connection example of an operation panel I/O unit with model number FCU8-DX834)" described later.

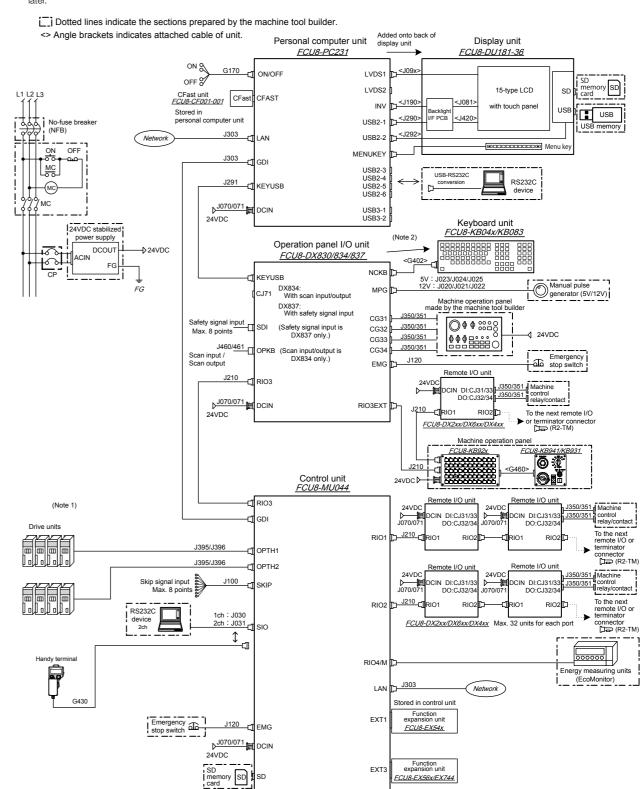
Dotted lines indicate the sections prepared by the machine tool builder.


<> Angle brackets indicates attached cable of unit.

(Note 1) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" described later. (Note 2) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later. (Note 3) Q6BAT can be connected to the control unit for backup use.

■M80W Series Windows-based display unit (19-type)

* For connecting a remote service gateway unit, refer to the "
M800W/M80W Series (Connection example of a remote service gateway unit)" described



(Note 1) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" described later. (Note 2) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later.

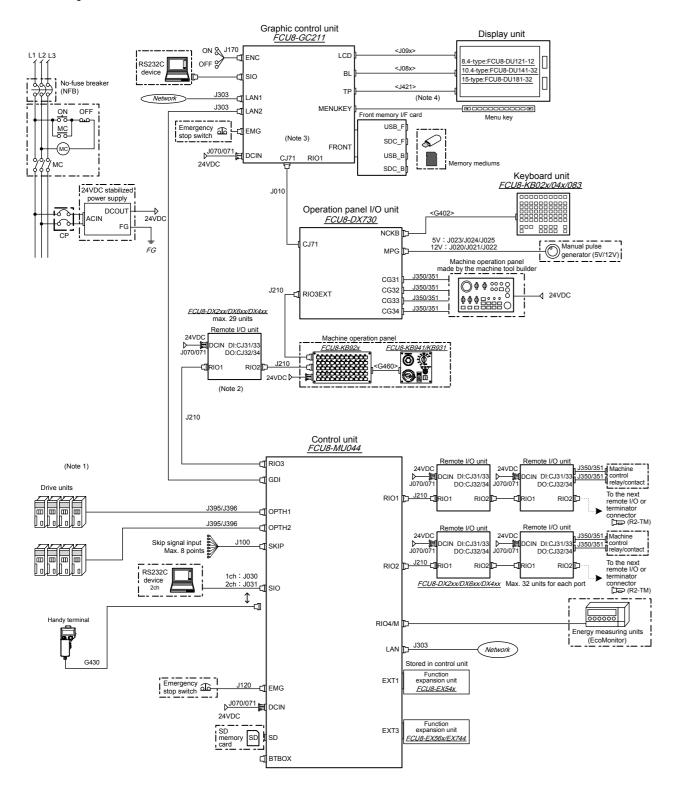
(Note 3) Q6BAT can be connected to the control unit for backup use.

■M80W Series Windows-based display unit (15-type)

* For connecting a remote service gateway unit, refer to the "M800W/M80W Series (Connection example of a remote service gateway unit)" described

(Note 1) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" described later. (Note 2) When using a keyboard unit, install the operation panel I/O unit on the back of the keyboard unit.

(Note 3) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later.


(Note 4) Q6BAT can be connected to the control unit for backup use.

■M80W Series non-Windows-based display unit (8.4-type/10.4-type/15-type)

* For connecting a remote service gateway unit, refer to the "
M800W/M80W Series (Connection example of a remote service gateway unit)" described

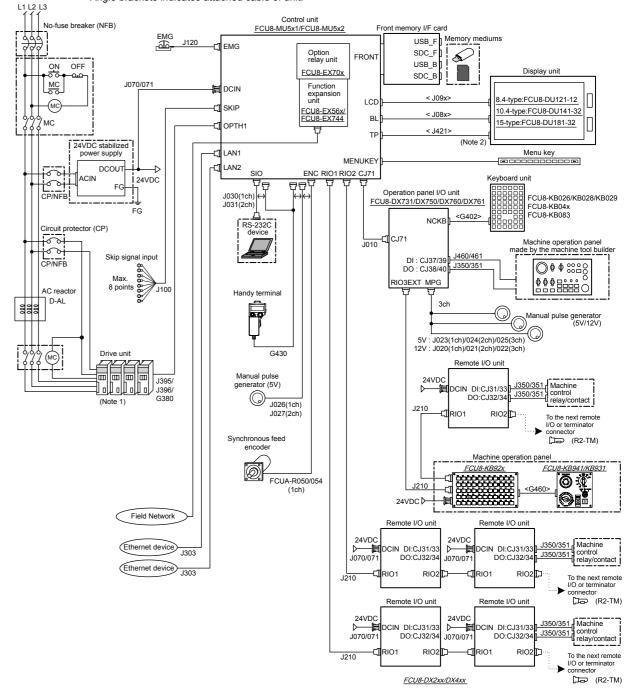
Dotted lines indicate the sections prepared by the machine tool builder.

<> Angle brackets indicates attached cable of unit.

(Note 1) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" described later.

(Note 2) When connecting a remote I/O unit to the 3rd RIO channel, insert it between the control unit and operation panel I/O unit. (Note 3) There is no need to connect a terminator R2-TM to the graphic control unit.

(Note 4) The 8.4-type display unit is incompatible with the touchscreen. TP connector is not used.


(Note 5) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later.

(Note 6) Q6BAT can be connected to the control unit or the graphic control unit for backup use.

■M80 Series without smart safety observation

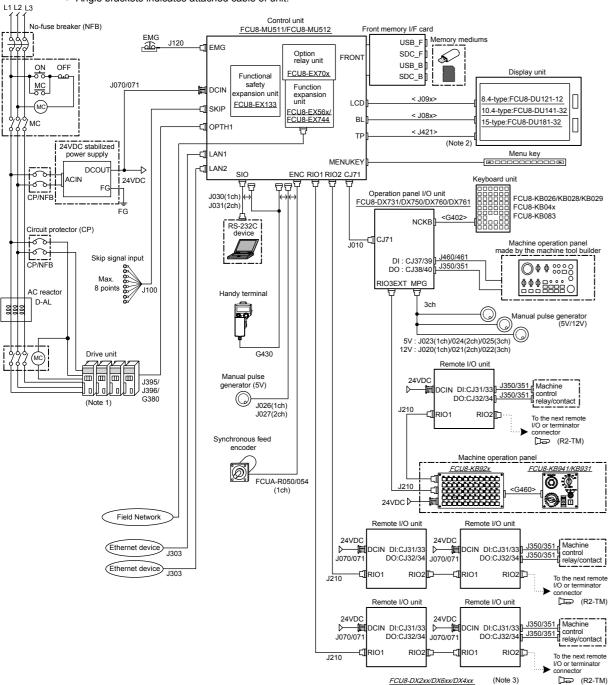
(Operation panel I/O unit: FCU8-DX731/DX750/DX760/DX761)

- * For connecting a remote service gateway unit, refer to the "■M800S/M80/E80 Series (Connection example of a remote service gateway unit)" described
- * For an operation panel I/O unit with model number FCU8-DX834, refer to the "M800S/M80/E80 Series (Connection example of an operation panel I/O unit with model number FCU8-DX834)" described later.
 - Dotted lines indicate the sections prepared by the machine tool builder.
 - <> Angle brackets indicates attached cable of unit.

(Note 1) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" described later.

(Note 2) The 8.4-type display unit is incompatible with the touchscreen. TP connector is not used. (Note 3) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later.

(Note 4) Q6BAT can be connected to the control unit for backup use

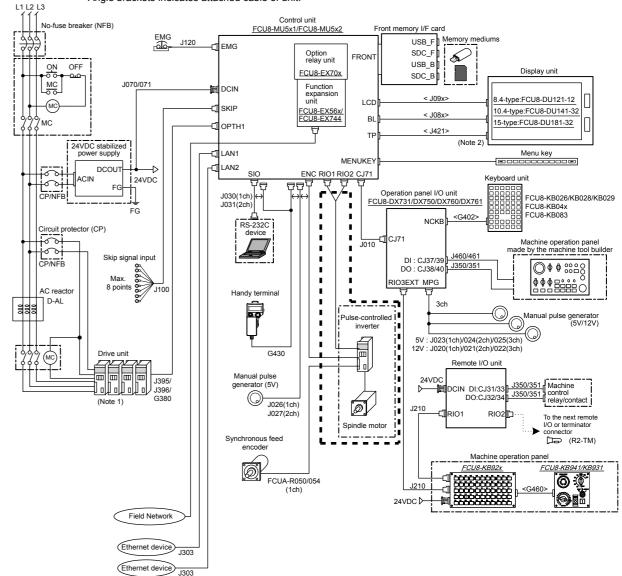

■M80 Series with smart safety observation

(Operation panel I/O unit: FCU8-DX731/DX750/DX760/DX761)

- * For connecting a remote service gateway unit, refer to the "M800S/M80/E80 Series (Connection example of a remote service gateway unit)" described
- * For an operation panel I/O unit with model number FCU8-DX834, refer to the "■M800S/M80/E80 Series (Connection example of an operation panel I/O unit with model number FCU8-DX834)" described later.

Dotted lines indicate the sections prepared by the machine tool builder.

<> Angle brackets indicates attached cable of unit.



(Note 5) Q6BAT can be connected to the control unit for backup use

■M80 Series connecting a pulse-controlled inverter

(Operation panel I/O unit: FCU8-DX731/DX750/DX760/DX761, without smart safety observation)

- * Pulse-controlled inverter refers to an inverter capable of controlling spindle operation through pulse train input.
- * For connecting a remote service gateway unit, refer to the "■M800S/M80/E80 Series (Connection example of a remote service gateway unit)" described
- * For an operation panel I/O unit with model number FCU8-DX834, refer to the "■M800S/M80/E80 Series (Connection example of an operation panel I/O unit with model number FCU8-DX834)" described later.
 - Dotted lines indicate the sections prepared by the machine tool builder.
 - <> Angle brackets indicates attached cable of unit.

(Note 1) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" described later. (Note 2) The 8.4-type display unit is incompatible with the touchscreen. TP connector is not used.

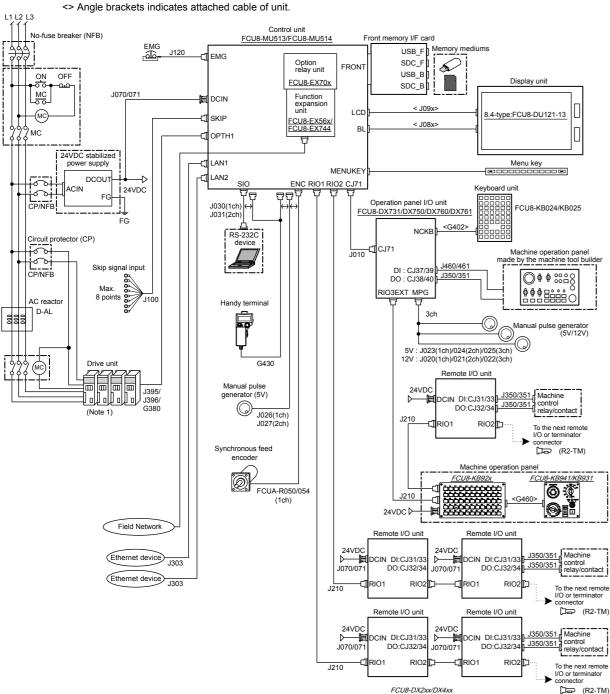
(Note 3) When the pulse-controlled inverter is connected, the remote I/O unit cannot be connected to the either of the RIO1 connector or the RIO2 connector.

(Note 4) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later.

(Note 5) Q6BAT can be connected to the control unit for backup use

⁽Note 1) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" described later. (Note 2) The 8.4-type display unit is incompatible with the touchscreen. TP connector is not used.

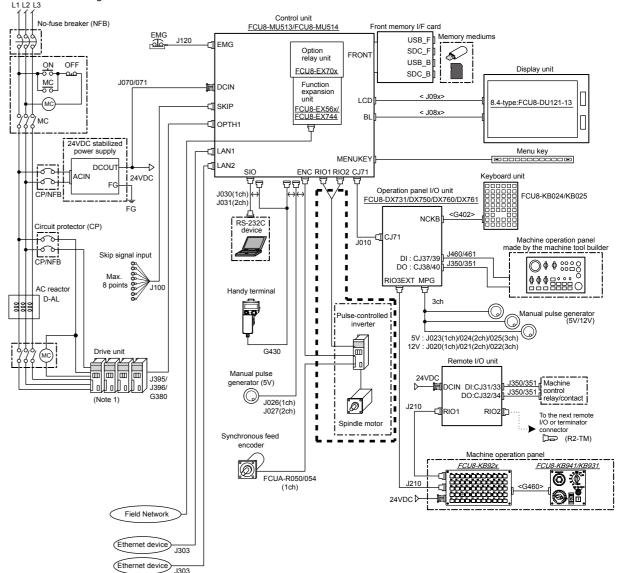
⁽Note 3) The safety remote I/O unit is available only when the functional safety expansion unit is mounted.


⁽Note 4) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later.

■E80 Series connecting a spindle drive unit

(Operation panel I/O unit: FCU8-DX731/DX750/DX760/DX761)

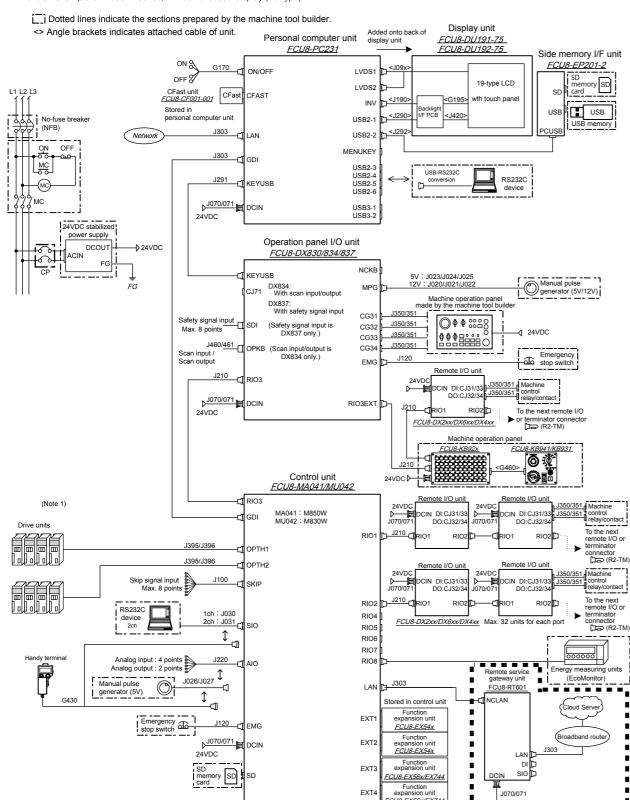
- * For connecting a remote service gateway unit, refer to the "M800S/M80/E80 Series (Connection example of a remote service gateway unit)" described
- * For an operation panel I/O unit with model number FCU8-DX834, refer to the "■M800S/M80/E80 Series (Connection example of an operation panel I/O unit with model number FCU8-DX834)" described later.


Dotted lines indicate the sections prepared by the machine tool builder.

■E80 Series connecting a pulse-controlled inverter

(Operation panel I/O unit: FCU8-DX731/DX750/DX760/DX761)

- * Pulse-controlled inverter refers to an inverter capable of controlling spindle operation through pulse train input.
- * For connecting a remote service gateway unit, refer to the "■M800S/M80/E80 Series (Connection example of a remote service gateway unit)" described
- * For an operation panel I/O unit with model number FCU8-DX834, refer to the "■M800S/M80/E80 Series (Connection example of an operation panel I/O unit with model number FCU8-DX834)" described later.
 - Dotted lines indicate the sections prepared by the machine tool builder.
 - <> Angle brackets indicates attached cable of unit.


(Note 4) Q6BAT can be connected to the control unit for backup use

⁽Note 2) When the pulse-controlled inverter is connected, the remote I/O unit cannot be connected to the either of the RIO1 connector or the RIO2 connector.

⁽Note 3) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later.

■M800W/M80W Series

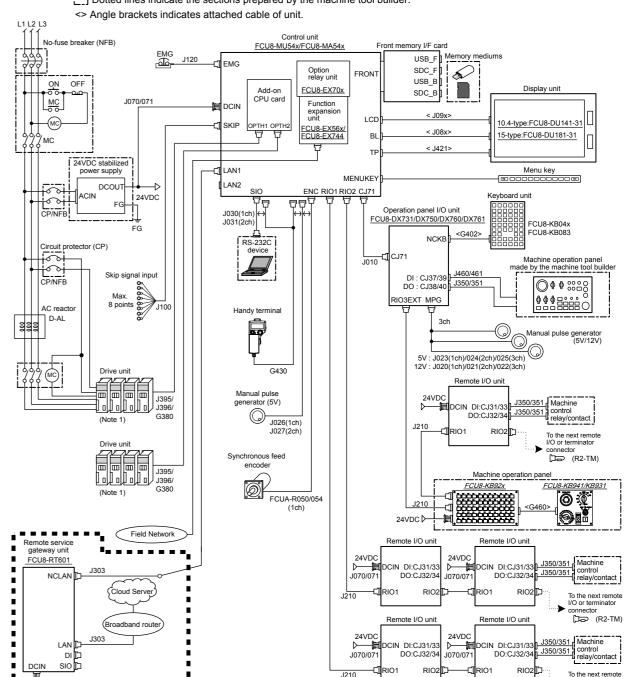
This is an example of M800W Series, Windows-based display (19-type).

(Note 1) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" described later.

(Note 2) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later.

(Note 3) For details of a remote service gateway unit, refer to "Remote Service iQ Care Remote4U User's Manual" (IB-1501552).

(Note 4) Q6BAT can be connected to the control unit for backup use.


■M800S/M80/E80 Series

(Connection example of a remote service gateway unit)

This is an example of M800S Series, equipped with the operation panel I/O unit FCU8-DX731/DX750/DX760/DX761.

* For an operation panel I/O unit with model number FCU8-DX834, refer to the "M800S/M80/E80 Series (Connection example of an operation panel I/O unit with model number FCU8-DX834)" described later.

Dotted lines indicate the sections prepared by the machine tool builder.

FCU8-DX2xx/DX6xx/DX4xx

(R2-TM)

(Note 1) For connections of the drive units, refer to "DRIVE SYSTEM SYSTEM CONFIGURATION DRAWING" described later.

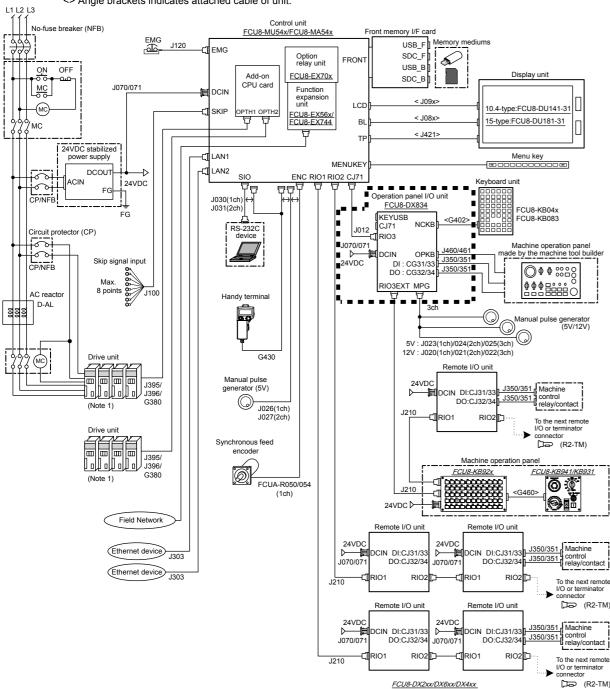
(Note 2) For details of the cable and the connector, refer to "CNC SYSTEM CABLES LIST" described later.

(Note 3) For details of a remote service gateway unit, refer to "Remote Service iQ Care Remote4U User's Manual" (IB-1501552).

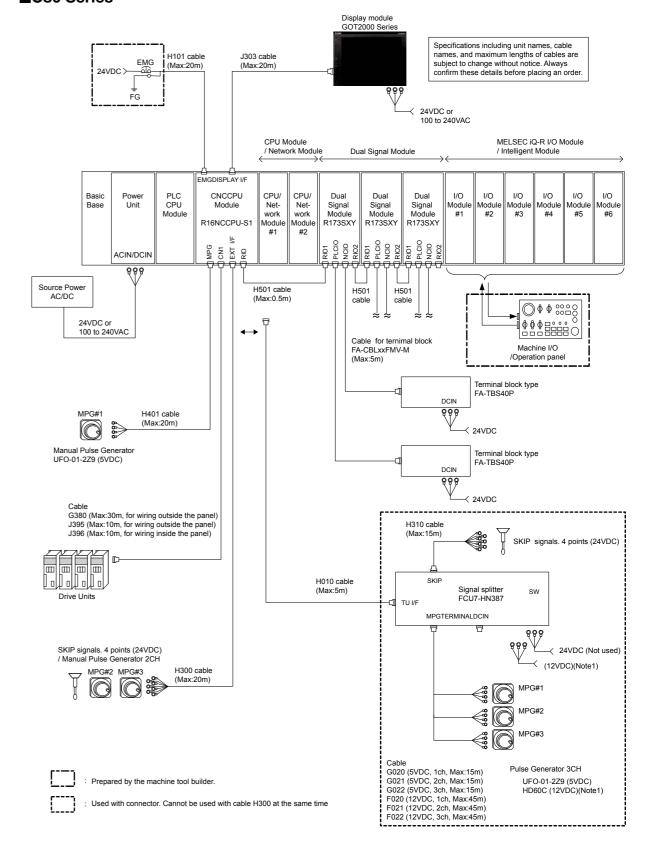
(Note 4) Q6BAT can be connected to the control unit for backup use.

J070/071

■M800S/M80/E80 Series


(Connection example of an operation panel I/O unit with model number FCU8-DX834)

Example of M800S Series.


CNC SYSTEM

Dotted lines indicate the sections prepared by the machine tool builder.

<> Angle brackets indicates attached cable of unit.

■C80 Series

(Note 1) HD60C (12VDC) requires another power source12VDC.

(Note 2) A CPU module can be mounted on the CPU slot of the base unit or the slot No. 0 to 6. A slot between CPU modules can be left empty for reservation. Note that you cannot mount an I/O module or intelligent function module on a slot between CPU modules.

CNC SYSTEM LIST OF CABLES

[M800/M80/E80 Series]

	Application	Туре	Length	Contents	Supported model					
	Application	туре	(m)	Contents	M800W	M800S	M80W	M80	E8	
		J291 L0.15M	0.15	KEYUSB KEYUSB						
	Connection cable between personal computer unit	J291 L0.5M	0.5		0	_	0	_	_	
	and operation panel I/O unit	J291 L1.0M	1	[J291 L*.**M]						
		J291 L1.0IVI	_		_					
		G071 L0.12M	0.12	DCOUT DCIN						
2)	24VDC relay cable for MITSUBISHI CNC machine	G071 L0.5M	0.5		0	0	0	0	l c	
(2	operation panel				"	"		"	`	
		G071 L1M	1							
		G170 L1M	1							
		G170 L2M	2	ON/OFF						
٥١	ON/OFF switch cable	G170 L3M	3				_			
3)	(ON/OFF switch - Personal computer unit)	G170 L5M	5		0	-	0	-	-	
	(for Windows-based display unit)	G170 L10M	10							
		G170 L15M	15							
		G.1.0 2.10111	1.0	F110						
		G430 3M	3	ENC HOST						
				Control						
4)	Calala far assassina ta bandu tarminal	G430 5M	5	unit Handy terminal					Ι,	
4)	Cable for connection to handy terminal	G430 SIVI) 5	SIO	0	0	0	0	(
				Cotrol panel						
		G430 10M	10	terminal block						
	O LL C MITTOLIDIOLII ONIO			SUBP RSW1 RSW2 SW-NO SW-C						
-\	Cable for MITSUBISHI CNC machine operation	0.400.0.51.4	0.5			_		_	Ι.	
5)	panel	G460 0.5M	0.5	SUBP DE RSW2	0	0	0	0	(
	(Cable between main panel and sub panel)			SW-NO						
				SW-C						
		14701414	-		_					
		J170 L1M	1							
	ON/OFF switch cable	J170 L2M	2							
3)	(ON/OFF switch - Graphic control unit)	J170 L3M	3		0	l _	0	_	١.	
٠,	(for non-Windows-based display uniut)	J170 L5M	5		~		~			
	(, , , , , , , , , , , , , , , , , , ,	J170 L10M	10							
		J170 L15M	15							
		J220 L2M	2							
	Analog output cable		+	AIO						
7)		J220 L3M	3		0	l —	l —	_	-	
		J220 L7M	7							
		J221 L2M	2	F=						
		-	+	AIO E						
8)	Analog input/output cable (for remote I/O unit)	J221 L3M	3		0	0	0	0		
		J221 L7M	7							
				<u></u>	_					
		J224 L1M	1							
		J224 L2M	2							
		J224 L3M	3							
a)	nalog input/output cable (for operation panel I/O	J224 L5M	5					0	(
9)	unit)	J224 L7M	7		1				Ι΄	
		J224 L10M	10	ON .						
		J224 L15M	15							
		J224 L20M	20			ĺ				
		J225 L1M	1		1					
		J225 L2M	2			l		İ		
		J225 L3M	3							
		J225 L5M	5	1 etc.						
0)	Analog output cable (for operation panel I/O unit)	J225 L5M	7		-	0	-	0	(
		J225 L7M J225 L10M	10							
		J225 L10M	15							
					1					
	0 " 1/0	J225 L20M	20		-		-	-		
41	Operation panel I/O interface cable	J010 L0.5M	0.5	CJ71 CJ71	_	_	_	_		
1)		(for 8.4/10.4-type display)			0	0	0	0	(
	M80W)	J010 L1M	1		1					
		J020 L1M	1							
		J020 L2M	2		1					
		J020 L3M	3		1					
		J020 L5M	5	MPG	1					
2)	Manual pulse generator cable (12V): 1ch	J020 L7M	7		0	0	0	0	(
2)		J020 L10M	10	1 □	1					
					1	1	1	i .	1	
		J020 L15M	15							
		J020 L15M J020 L20M	15 20							

(13)	Application	1			1M800W				
(13)		J021 L1M	(m)			M8005	M80W	M80	E80
(13)		J021 L1M J021 L2M	1 2						
(13)		J021 L3M	3						
(13)		J021 L5M	5	MPG Г □					
	Manual pulse generator cable (12V) : 2ch	J021 L7M	7		0	0	0	0	0
	(-1-/-1	J021 L10M	10				~		
		J021 L15M	15						
		J021 L20M	20						
		J021 L30M	30						
		J022 L1M	1						
		J022 L2M	2	~					
		J022 L3M	3	MPG P					
		J022 L5M	5						
(14)	Manual pulse generator cable (12V): 3ch	J022 L7M	7		0	0	0	0	0
		J022 L10M	10						
		J022 L15M	15	└ ₩					
		J022 L20M J022 L30M	30						
\dashv		J022 L30W	1		+				
		J023 L1M	2						
		J023 L3M	3						
		J023 L5M	5	MPG					0
(15)	Manual pulse generator cable (5V): 1ch	J023 L7M	7			0	0	0	
		J023 L10M	10						
		J023 L15M	15						
		J023 L20M	20						
		J024 L1M	1						
		J024 L2M	2						
		J024 L3M	3	MPG					.
(16)	Manual pulse generator cable (5V): 2ch	J024 L5M	5		0	0	0	0	0
(10)	ivialidal pulse generator cable (5V) . 2011	J024 L7M	7						
		J024 L10M	10						
		J024 L15M	15						
\dashv		J024 L20M	20		_		-		
		J025 L1M	1						
		J025 L2M J025 L3M	3						
		J025 L3M J025 L5M	5	MPG			0	0	0
(17)	Manual pulse generator cable (5V): 3ch	J025 L7M	7		0	0			
		J025 L10M	10						
		J025 L15M	15	E≣i					
		J025 L20M	20					,	
\neg		J026 L1M	1						
		J026 L2M	2						
		J026 L3M	3						
(4.0)	Manual pulse generator cable (5V): 1ch	J026 L5M	5	MPG					0
(18)	(for connection to control unit)	J026 L7M	7		0	0	0	0	
	, ,	J026 L10M	10						
		J026 L15M	15						
		J026 L20M	20						
		J027 L1M	1						
		J027 L2M	2						
	Manual and an annual and a 11 (514 C)	J027 L3M	3	MPG	0				
	Manual pulse generator cable (5V): 2ch (for connection to control unit)	J027 L5M	5			0	0	0	
	(for confidential to control unit)	J027 L7M J027 L10M	7 10						
		J027 L10M	15						
		J027 L13W	20						
\dashv		J030 L1M	1		+				
		J030 L2M	2	SIO					
	RS-232C I/F cable: 1ch	J030 L3M	3	ieżn /III					
(20)	(for control unit)	J030 L5M	5	SIO1	0	0	0	0	0
	· ·	J030 L7M	7	11 / 11					
		J030 L10M	10	-					
\neg		J031 L1M	1	_					
				∕ាំំំឺ					
		J031 L2M	2	sio Sio1					
	RS-232C I/F cable: 2ch	J031 L3M	3						
	(for control unit)		+		0	0	0	0	0
	(J031 L5M	5						
		J031 L7M	7	SIO2					
- 1		J031 L10M	10	√-1 11					

	Application	ication Type Length (m) Contents							
		J070 L1M	1				M80W	M80	E80
		J070 L2M	2						
		J070 L3M J070 L5M	3 5	DCIN					
(22)	24VDC power cable	J070 L7M	7		0	0	0	0	0
		J070 L10M	10						
		J070 L15M	15	_					
		J071 L20M (for long distance)	20						
		J100 L1M	1						
		J100 L2M	2	F					
		J100 L3M	3	SKIP					
(23)	SKIP input cable	J100 L5M J100 L7M	5		0	0	0	0	0
		J100 L10M	10						
		J100 L15M	15	₽					
		J100 L20M	20						
		J120 L1M	1						
		J120 L2M J120 L3M	3						
		J120 L5M	5	EMG					
(24)	Emergency stop cable	J120 L7M	7		0	0	0	0	0
		J120 L10M	10						
		J120 L15M	15						
		J120 L20M J120 L30M	20 30						
		J121 L1M	1						
		J121 L2M	2						
		J121 L3M	3						
()	Emergency stop cable for MITSUBISHI CNC	J121 L5M	5	EMG					
(25)	machine operation panel	J121 L7M J121 L10M	7		0	0	0	0	0
		J121 L15M	15						
		J121 L20M	20						
		J121 L30M	30						
		J210 L0.3M	0.3						
		J210 L1M J210 L2M	2						
		J210 L3M	3						
(0.0)	Demosts I/O O O communication color	J210 L5M	5	RIO					
(26)	Remote I/O 2.0 communication cable	J210 L7M	7		0	0	0	0	0
		J210 L10M	10						
		J210 L15M J210 L20M	15 20						
		J210 L30M	30						
		J303 L1M	1						
		J303 L2M	2						
		J303 L3M	3						
(27)	LAN straight cable	J303 L5M J303 L7M	5 7	LAN		0			
(21)	Driv Straight Cable	J303 L10M	10				~		
		J303 L15M	15						
		J303 L20M	20						
		J303 L30M	30						\vdash
		J350 L1M	1	M800W/M80W:CJ31,CJ32,CJ33,CJ34,CG31,CG32,CG33,CG34 M800S/M80:CJ31,CJ32,CJ33,CJ34,CJ38,CJ40,CJ42					
(28)	DI/DO cable (connectors at both ends)	J350 L2M	2		0	0	0	0	0
"	,	J350 L3M	3						
		J350 L5M	5	HI)————————————————————————————————————					
(29)	DI/DO cable (connector at one end)	J351	3	M800W/M80W:CJ31,CJ32,CJ33,CJ34,CG31,CG32,CG33,CG34 M800S/M80:CJ31,CJ32,CJ33,CJ34,CJ38,CJ40,CJ42	0	0	0	0	0
		J460 L1M	1	CJ37,CJ39 CJ37,CJ39					
	DI/DO cable (connectors at both ends)	J460 L2M	2	M					
(30)	(for operation panel I/O unit)	J460 L3M	3	<u> </u>	-	0	—	0	0
	,	J460 L5M	5	Ш					
		0400 LJW	ا				-		\vdash
(31)	DI/DO cable (connector at one end) (for operation panel I/O unit)	J461	3	CJ37, CJ39	_	0	_	0	0

	Application	Type	Length	Contents		nodel			
	Application	Type	(m)	Contents	M800W	M800S	M80W	M80	E80
(32)	Synchronous encoder - control unit (straight, with connector) (for FCU8-EX544 (M800W/M80W))	FCUA-R050-5M	5	ENC D	0	0	0	0	0
		FCUA-R054-3M	3						
	Synchronous encoder - control unit	FCUA-R054-5M	5	ENC					
(33)	(right angle, with connector)	FCUA-R054-10M	10		0	0	0	0	0
	(for FCU8-EX544 (M800W/M80W))	FCUA-R054-15M	15						
		FCUA-R054-20M	20						
(34)	Cable for emergency stop release	G123	_	EMG	0	0	0	0	0
(35)	Terminator for remote I/O interface	R2-TM		One terminator is required to be installed at the final end of remote IO unit.	0	0	0	0	0

■Cable connector sets for CNC

	A 11	_				Suppo	orted r	nodel	
	Application	Туре	Cor	ntents	M800W	M800S	M80W	M80	E80
(1)	General I/O units (for SKIP,SIO,MPG,AIO)	FCUA-CS000	Connector (3M) 10120-3000PE x 2pcs.	Shell kit (3M) 10320-52F0-008 x 2pcs.	0	0	0	0	0
(2)	Emergency stop connector (for EMG)	005057-9403 16-02-0103	Connector (MOLEX) 50-57-9403 x 1pc.	Gold contact (MOLEX) 16-02-0103 x 3pcs.	0	0	0	0	0
(3)	Connector kit for RIO2.0 unit	RIO2 CON	Connector (Tyco Electronics) 1-1318119-3 x 2pcs.	Contact (Tyco Electronics) 1318107-1 x 8pcs.	0	0	0	0	0
			Connector (Tyco Electronics) 2-178288-3 x 1pc.	Contact (Tyco Electronics) 1-175218-5 x 3pcs.					
(4)	24VDC power supply connector (for DCIN)	FCUA-CN220	Connector (Tyco Electronics) 2-178288-3 x 1pc.	Contact (Tyco Electronics) 1-175218-5 x 3pcs.	0	0	0	0	0
(5)	DI/DO connector (for operation panel I/O unit) (for remote I/O unit)	7940-6500SC 3448-7940	Connector (3M) 7940-6500SC x 4pcs.	Strain relief (3M) 3448-7940 x 4pcs.	0	0	0	0	0
(6)	DI connector (for operation panel I/O unit)	7950-6500SC 3448-7950	Connector (3M) 7950-6500SC x 2pcs.	Strain relief (3M) 3448-7950 x 2pcs.	0	0	0	0	0
(7)	ON/OFF switch connector	005057-9404 16-02-0103	Connector (MOLEX) 50-57-9404 x 1pc.	Contact (MOLEX) 16-02-0103 x 4pcs.	0	_	0	_	_
(8)	CJ71 connector	2-1318119-4 1318107-1	Connector (Tyco Electronics) 2-1318119-4 x 1pc.	Contact (Tyco Electronics) 1318107-1 x 8pcs.	_	0	_	0	0
(9)	THERMISTOR connector (for thermistor input unit)	37104-2165- 000FL 10P	Connector (3M) 37104-2165-000FL x 10pcs.		0	0	0	0	0

[C80 Series]

	Application	Туре	Length (m)	Contents	Supported model
		H101 L0.5M	0.5		
		H101 L1M	1		
		H101 L2M	2		
		H101 L3M	3	EMG	
(1)	Emergency stop cable	H101 L5M	5		Emergency stop input cable, maximum length: 20m
		H101 L7M	7		
		H101 L10M	10		
		H101 L15M	15		
		H101 L20M	20		
		J303 L1M	1		
		J303 L2M	2		
		J303 L3M	3	DISPLAY DISPLAY	
(2)	Display communication cable (Shielded twisted pair cable)	J303 L5M	5		Display interface, maximum length: 20m
	(C. solde Wiston pair statisty	J303 L10M	10		Thousand Tongun 2011
		J303 L15M	15		
		J303 L20M	20		
		H300 L0.5M	0.5		
		H300 L1M	1		
		H300 L2M	2	EXTI/F	Skip/manual pulse generator
		H300 L3M	3	 	input interface,
(3)	Skip/manual pulse generator input cable (For CNC CPU unit)	H300 L5M	5		maximum length: 20m (Note) This cable cannot
	(Cr Cr C Cr C Cr III)	H300 L7M	7		be used together
		H300 L10M	10		with the H010 cable.
		H300 L15M	15		
		H300 L20M	20		
		H310 L0.5M	0.5		
		H310 L1M	1		
		H310 L2M	2	SKIP	Older in an Albertonia
(4)	Olice insert a ship (Fauri and an Pitter)	H310 L3M	3		Skip input interface when signal splitter is used,
(4)	Skip input cable (For signal splitter)	H310 L5M	5		maximum
		H310 L7M	7		length: 15m
		H310 L10M	10		
		H310 L15M	15		
		H401 L0.5M	0.5		
		H401 L1M	1		
		H401 L2M	2		
		H401 L3M	3	MPG	Manual pulse
(5)	Manual pulse generator cable (For CNC CPU unit)	H401 L5M	5	1	generator (1ch), maximum length: 20m
	(or or or or and)	H401 L7M	7		(5V power supply type)
		H401 L10M	10		
		H401 L15M	15		
		H401 L20M	20		
		H501 L0.1M	0.1		
(0)		H501 L0.2M	0.2	RIO RIO	Between safety signal units,
(6)	Safety signal unit connection cable	H501 L0.3M	0.3		maximum length: 0.5m
		H501 L0.5M	0.5		
		H010 L0.5M	0.5		
		H010 L1M	1	EXT I/F NC I/F	Signal splitter connection cable, maximum length: 5m
(7)	Signal splitter connection cable	H010 L2M	2	26 1 26	(Note) This cable cannot
		H010 L3M	3	50 25 50	be used together with the H300 cable.
		H010 L5M	5		with the Hood capie.

G CNC SYSTEM

	Application	Туре	Length (m)	Contents	Supported model
		F020 L0.5M	0.5		
		F020 L1M	1		
		F020 L2M	2		
		F020 L3M	3		Manual pulse generator (1ch), maximum length: 45m
(8)	Manual pulse generator cable (For signal splitter)	F020 L5M	5		(12V power supply type)
	(or organize opinition)	F020 L7M	7		12V power supply separately necessary
		F020 L10M	10		
		F020 L15M	15		
		F020 L20M	20		
		F021 L0.5M	0.5		
		F021 L1M	1	-	
		F021 L2M	2		Manual auton apparetor
	Manual pulse generator cable	F021 L3M	3		Manual pulse generator (2ch), maximum length: 45m
(9)	(For signal splitter)	F021 L5M	5	MPG WEST	(12V power supply type) 12V power supply
		F021 L7M	7		separately necessary
		F021 L10M	10		
		F021 L15M	15	<u> </u>	
		F021 L20M	20		
		F022 L0.5M	0.5		
		F022 L1M	1		
		F022 L2M	2		Manual pulse generator
	Manual pulse generator cable	F022 L3M	3		(3ch), maximum length: 45m
(10)	(For signal splitter)	F022 L5M	5		(12V power supply type) 12V power supply
		F022 L7M 7 F022 L10M 10		separately necessary	
		F022 L15M	15		
		F022 L20M	20		
		G020 L0.5M	0.5		
		G020 L1M	2		
		G020 L2M G020 L3M	3		Manual pulse generator
(11)	Manual pulse generator cable (For signal splitter)	G020 L5M	5		(1ch), maximum length: 15m
	(1 2 3 1 2 4 1 2 7	G020 L7M	7		(5V power supply type)
		G020 L10M	10		
		G020 L15M	15		
		G021 L0.5M	0.5		
		G021 L1M	1		
		G021 L2M	2		
	Manual pulse generator cable	G021 L3M	3		Manual pulse generator
(12)	(For signal splitter)	G021 L5M	5	MPG WEEK	(2ch), maximum length: 15m (5V power supply type)
		G021 L7M	7		(5v power supply type)
		G021 L10M	10		
		G021 L15M	15		
		G022 L0.5M	0.5		
		G022 L1M	1		
	Manual pulse generator cable	G022 L2M	2		
		G022 L3M	3		Manual pulse generator
(13)	(For signal splitter)	G022 L5M	5		(3ch), maximum length: 15m (5V power supply type)
		G022 L7M	7		(= : == :::::::::::::::::::::::::::::::
		G022 L10M	10		
		G022 L15M	15		
	1	1	1		1

■MEMO

DRIVE SYSTEM

Drive units

High-performance Servo/ Spindle Drive Units MDS-E/EH Series

- •The servo control-dedicated core processor realizes improved control speed, leading to enhanced basic performance. When combined with a higher resolution motor sensor and advanced high-speed optical communication, this drive contributes to high-speed, high-accuracy control.
- •The motor power connector is equipped with an anti-misinsertion mechanism. This helps to eliminate connection errors.

DRIVE

SYSTEM

- •Improved diagnostic and preventive-maintenance features
- Safe Torque Off (STO) and Safe Brake Control (SBC) are also incorporated as additional safety features.

Multi-hybrid Drive Units MDS-EM/EMH Series

- •The multi-hybrid drive units are capable of driving a maximum of three servo axes and one spindle. This contributes to the downsizing of machines and offers technical advantages.
- •The motor power connector is equipped with an anti-misinsertion mechanism. This helps to eliminate connection errors.
- •Safe Torque Off (STO) and Safe Brake Control (SBC) are also incorporated as additional safety features.
- Fan unit contributes to easier fan exchange
- •MDS-EMH 400V system drive unit is available.

All-in-one Compact Drive Units MDS-EJ/EJH Series

- Ultra-compact drive units with built-in power supplies contribute to smaller control panel size.
- The 2-axis type is added for further downsizing.
- •The servo control-dedicated core processor realizes an increase in control speed, leading to improved basic performance. When combined with a higher resolution motor sensor and enhanced high-speed optical communication, this drive contributes to high-speed, high-accuracy control.
- •Safe Torque Off (STO) and Safe Brake Control (SBC) are also incorporated as additional safety features.
- •MDS-EJH 400V system drive unit is available (Note 1).

PWM Converter MDS-EX-CVP Series

- Product of the PWM converter series which has a stabilizing DC voltage function and boost function.
 MDS-EX-CVP series reduces the output deceleration of the spindle motor and improves output in the high-speed range.
- Only 400V system power supply unit is available.

Servo motors

Medium-inertia, High-accuracy, High-speed Motors HG Series

- •Sensor resolution has been significantly improved. The servo motors, which boast smooth rotation and outstanding acceleration capabilities, are well-suited to serve as feed axes of machine tools.
- •Range: 0.2 to 11 [kW] •Maximum rotation speed:
- 2,000 to 6,000 [r/min]
- Safety support sensors are included as standard specification. Sensor connectors are screw-locked and have enhanced vibration resistance. Three sensor resolutions (i.e., 1, 4 or 67 million pulses/rev) are available.
- •This can also be used as a tool spindle motor.
- •Small-sized connector allows horizontal cable connection, which helps to save space in machines. (Note 2)

Linear Servo Motors LM-F Series

- •Use in clean environments is possible since no ball screws are used, eliminating possible contamination from grease.
- •Elimination of transmission mechanisms, including backlash, enables smooth, quiet operation even at high speeds.
- •Range:
- Maximum thrust: 900 to 18,000 [N·m]

Direct-drive Servo Motors TM-RB Series

- High-torque, direct-drive motors combined with high-gain control provide quick acceleration and positioning, which makes rotation smoother.
- •Suitable for rotary axes that drive tables or spindle heads
- •Range:
- Maximum torque: 36 to 1,280 [N·m]

•Spindle motors

High-performance Spindle Motors SJ-D Series

- •Motor energy loss has been significantly reduced by optimizing the magnetic circuit.
- High-speed bearings are incorporated as a standard feature, helping to achieve higher speed, lower vibration and improved durability.
 Range: 3.7 to 26 lkWl
- •Maximum speed: 8,000 to 12,000 [r/min]

High-output, High-speed Spindle Motors SJ-DG Series

- Addition of S3 rating (%ED rating) has improved output and torque acceleration/deceleration characteristics.
- Balance adjustment ring added to the counter-load side for fine tuning.
- •Range:
- S3 rating: 5.5 to 15 [kW]
 •Maximum speed: 10,000 to 12,000 [r/min]

High-torque Spindle Motors SJ-DN Series

- •Higher torque characteristics than those of SJ-D series with the same output. This series has made it possible to drive with the small-capacity multi-hybrid drive unit.
- Suitable for heavy cutting. This helps to improve productivity.
- •Range: 7.5 to 18.5 [kW]
- •Maximum speed: 8,000 [r/min]

Low-inertia, High-speed Spindle Motors SJ-DL Series

- •This series of spindle motors is dedicated to use in tapping machines that require faster drilling and tapping.
- •The latest design technologies have made it possible to attain lower vibration and greater rigidity even with the lighter weight.
- •Range: 0.75 to 7.5 [kW]
- •Maximum speed: 10,000 to 24,000 [r/min]

Compact, Lightweight Spindle Motors SJ-DJ Series

- Spindle motors that are smaller and lighter than those of SJ-D series with the same output. This helps to further downsize machines.
- •Range: 5.5 to 15 [kW]
- •Maximum speed: 8,000 to 12,000 [r/min]

High-output high-torque IPM spindle motor SJ-DM Series

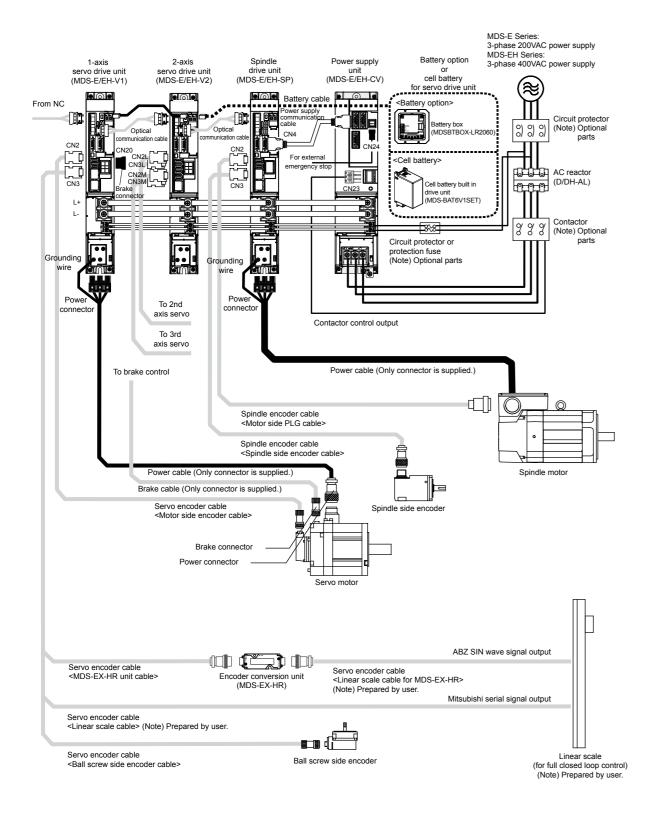
- •The use of magnets allows for a higher output and torque, leading to a reduced cycle time.
- •SJ-DM Series can provide torque characteristics comparable to the former SJ-D Series of the next frame number.
- •Maximum rotation speed: 12,000 [r/min]

Built-in Spindle Motors SJ-BG Series

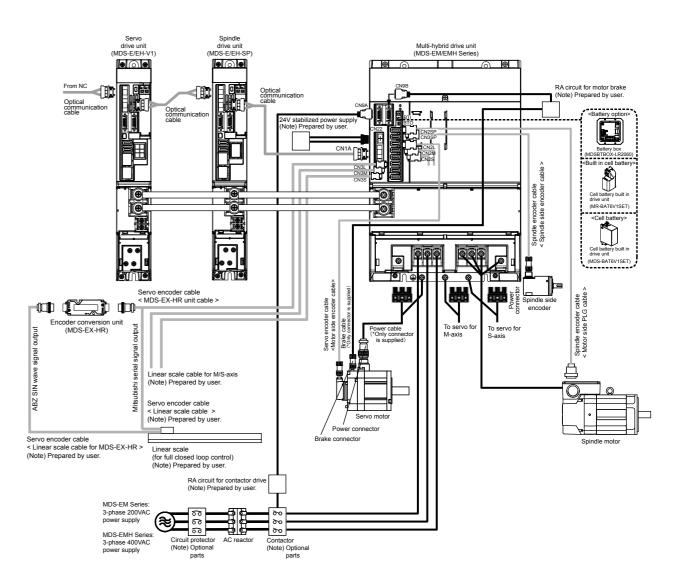
- •The electrical design has been optimized to increase the continuous rated torque per unit volume, contributing to the downsizing of spindle units.
- Options for mold specification and cooling jacket specification are prepared.

Tool Spindle Motors HG-JR Series

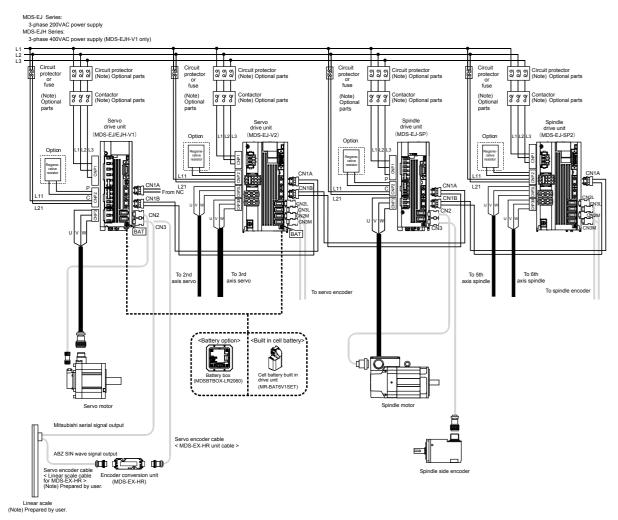
- Compact tool spindle motors are designed to have the small, high-output characteristics of servo motors yet offer high-speed rotation (8,000r/min).
 These motors contribute to downsizing spindle size, like rotary tool spindles.
- •Range: 0.75 to 1.5 [kW]
- •Maximum rotation speed: 8,000 [r/min]
- •Small-sized connector allows horizontal cable connection, which helps to save space in machines. (Note 2)


(Note 1) For servo motors only (Note 2) Options supported (Flange size 90SQ only) * Use Mitsubishi Electric CNC's dedicated drive unit and motor

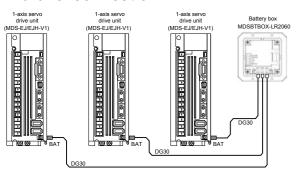
77


78

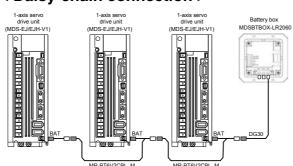
SYSTEM CONFIGURATION


■MDS-E/EH Series

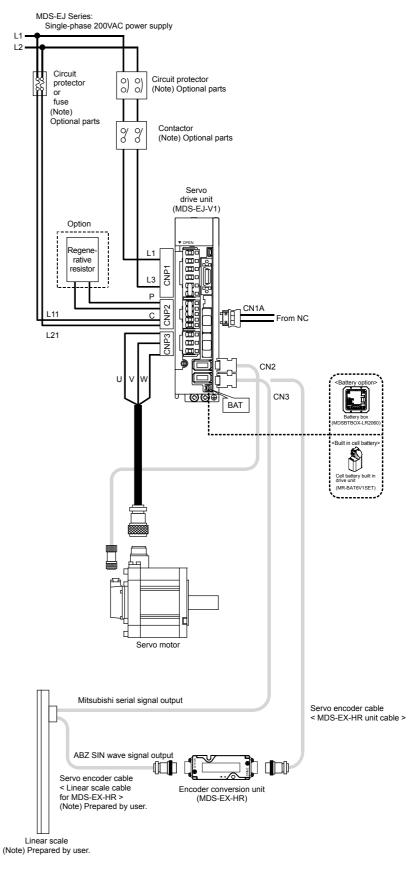
■MDS-EM/EMH Series

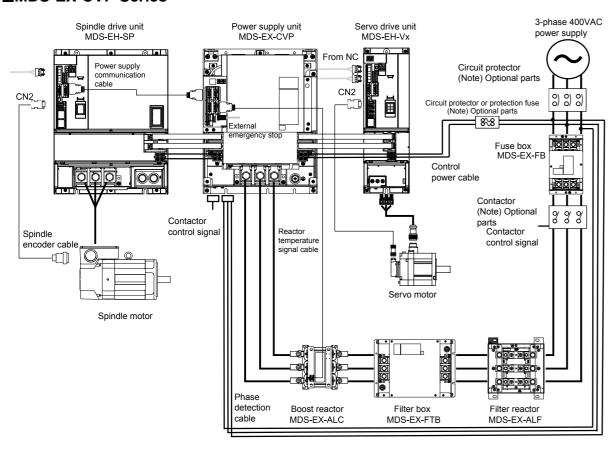


■MDS-EJ/EJH Series



When using the battery box <MDSBTBOX-LR2060>


< Parallel connection >


< Daisy-chain connection >

<For single-phase power supply>

■MDS-EX-CVP Series

■MEMO

SPECIFICATIONS

<Servo specification>

	Item	MDS-E-V1/V2/V3	MDS-EH-V1/V2	MDS-EM/EMH-SPV3	MDS-EJ/EJH-V1	MDS-EJ-V2
	1.1 Full closed loop control	•	•	•	•	•
1 Base control	1.2 Position command synchronous control	•	•	•	•	•
functions	1.3 Speed command synchronous control	● (Note 1)	•	-	-	•
	1.4 Distance-coded reference position control	•	•	•	•	•
	2.1 Torque limit function (stopper function)	•	•	•	•	•
	2.2 Variable speed loop gain control	•	•	•	•	•
	2.3 Gain changeover for synchronous tapping control	•	•	•	•	•
	2.4 Speed loop PID changeover control	•	•	•	•	•
	2.5 Disturbance torque observer	•	•	•	•	•
2 Servo control	2.6 Smooth High Gain control (SHG control)	•	•	•	•	•
function	2.7 High-speed synchronous tapping control (OMR-DD control)	•	•	•	•	•
	2.8 Dual feedback control	•	•	•	•	•
	2.9 HAS control	•	•	•	•	•
	2.10 OMR-FF control	•	•	•	•	•
	3.1 Jitter compensation	•	•	•	•	•
	O O Night-In filters	Variable frequency: 4	Variable frequency: 4	Variable frequency: 4	Variable frequency: 4	Variable frequency: 4
3.2 Notch filter 3.3 Adaptive tracking-type notch filter	Fixed frequency: 1	Fixed frequency: 1	Fixed frequency: 1	Fixed frequency: 1	Fixed frequency: 1	
	3.3 Adaptive tracking-type notch filter	•	•	•	•	•
3 Compensation	3.4 Overshooting compensation	•	•	•	•	•
control function	3.5 Machine end compensation control	•	•	•	•	•
	3.6 Lost motion compensation type 2	•	•	•	•	•
	3.7 Lost motion compensation type 3	•	•	•	•	•
	3.9 Real-time tuning I	•	•	•	•	•
	3.10 Full-closed torsion compensation function	•	•	•	•	•
	4.1 Deceleration control at emergency stop	•	•	•	•	•
	4.2 Vertical axis drop prevention/pull-up control	•	•	•	•	•
	4.3 Earth fault detection	•	•	•	•	•
4 Protection	4.4 Collision detection function	•	•	•	•	•
	4.5 Fan stop detection	•	•	•	•	•
function	4.8 STO (Safe Torque Off) function	•	•	●(Note 2)	•	•
	4.9 SBC (Safe Brake Control) function	•	•	•	•	•
	4.10 Deceleration and stop function at power failure (Note 3)	•	•	•	-	-
	4.11 Retraction function at power failure (Note 4)	•	•	-	-	-
F Camuanaa	5.2 Motor brake control function	•	•	•	•	•
5 Sequence	5.4 Specified speed output	•	•	•	-	-
function	5.5 Quick READY ON sequence	•	•	•	-	-
	6.1 Monitor output function	•	•	•	•	•
6 Diagnosis function		•	•	•	•	•
	6.3 Machine inertia display function	•	•	•	•	•

(Note 1) Always set L-axis as primary axis and M-axis as secondary axis for the speed command synchronous control using MDS-E-V3. Other settings cause the initial parameter error alarm. (Note 2) The dedicated wiring STO is not supported by MDS-EM/EMH Series.

(Note 3) The power backup unit and resistor unit option are required. (Note 4) The power backup unit and capacitor unit option are required.

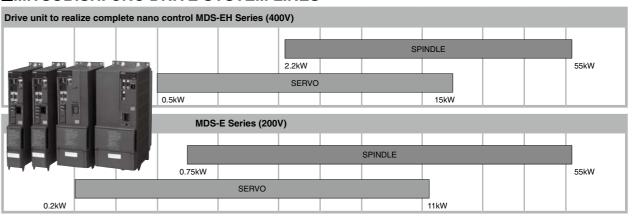
<Spindle specification>

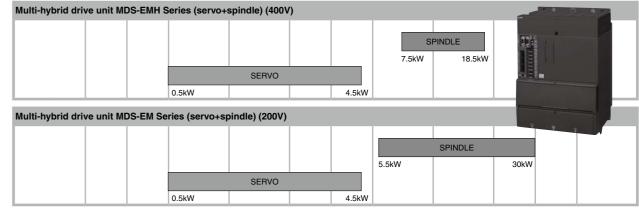
	Item	MDS-E/EH-SP	MDS-E-SP2	MDS-EM/EMHSPV3	MDS-EJ-SP	MDS-EJ-SP2
	1.1 Full closed loop control	•	•	•	•	•
	1.5 Spindle's continuous position loop control	•	•	•	•	•
1.1 Full closed loo	1.6 Coil changeover control	•	•	•	-	-
	1.7 Gear changeover control	•	•	•	•	•
1 Base control	1.8 Orientation control	•	•	•	•	•
functions	1.9 Indexing control	•	•	•	•	•
	1.10 Synchronous tapping control	•	•	•	•	•
	1.11 Spindle synchronous control	•	•	•	•	•
	1.12 Spindle/C axis control	•	•	•	•	•
	1.13 Proximity switch orientation control	•	●(Note 1)	•	•	●(Note 1)
	2.1 Torque limit function	•	•	•	•	•
	2.2 Variable speed loop gain control	•	•	•	•	•
	2.5 Disturbance torque observer	•	•	•	•	•
	2.6 Smooth High Gain control (SHG control)	•	•	•	•	•
2 Spindle control	2.7 High-speed synchronous tapping control (OMR-DD control)	•	•	•	•	•
functions	2.8 Dual feedback control	•	•	•	•	•
	2.10 OMR-FF control	•	•	•	•	•
	2.11 Control loop gain changeover	•	•	•	•	•
	2.12 Spindle output stabilizing control	•	•	•	•	•
	2.13 High-response spindle acceleration/deceleration function	•	•	•	•	•
	3.1 Jitter compensation	•	•	•	•	•
	O O Ni-t-It filt-	Variable frequency: 4	Variable frequency: 4	Variable frequency: 4	Variable frequency: 4	Variable frequency: 4
	3.2 Notch filter	Fixed frequency: 1				
3 Compensation	3.3 Adaptive tracking-type notch filter	•	•	•	•	•
control function	3.4 Overshooting compensation	•	•	•	•	•
	3.6 Lost motion compensation type 2	•	•	•	•	•
	3.8 Spindle motor temperature compensation function	•	•	•	•	•
	3.9 Real-time tuning I	•	•	•	•	•
	4.1 Deceleration control at emergency stop	•	•	•	•	•
	4.3 Earth fault detection	•	•	•	•	•
4 Protection	4.5 Fan stop detection	•	•	•	•	•
function	4.8 STO (Safe Torque Off) function	•	•	●(Note 2)	•	•
	4.10 Deceleration and stop function at power failure (Note 3)	•	•	•	-	-
	4.11 Retraction function at power failure (Note 4)	•	•	-	-	-
5 Sequence	5.4 Specified speed output	•	•	•	-	-
functions	5.5 Quick READY ON sequence	•	•	•	-	-
	6.1 Monitor output function	•	•	•	•	•
. D:	6.2 Machine resonance frequency display function	•	•	•	•	•
	6.3 Machine inertia display function	•	•	•	•	•
tunctions	6.4 Motor temperature display function	ě	•	•	ě	•
	6.5 Load monitor output function	•				

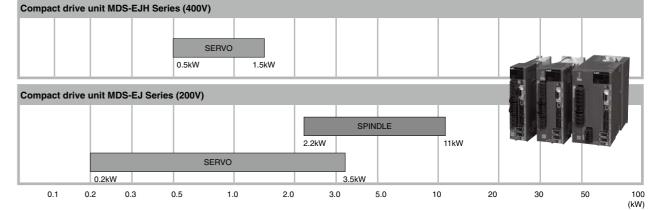
(Note 1) As for 2-axis spindle drive unit, setting is available only for one of the axes.

(Note 2) The dedicated wiring STO is not supported by MDS-EM/EMH Series.

(Note 3) The power backup unit and resistor unit option are required. (Note 4) The power backup unit and capacitor unit option are required.

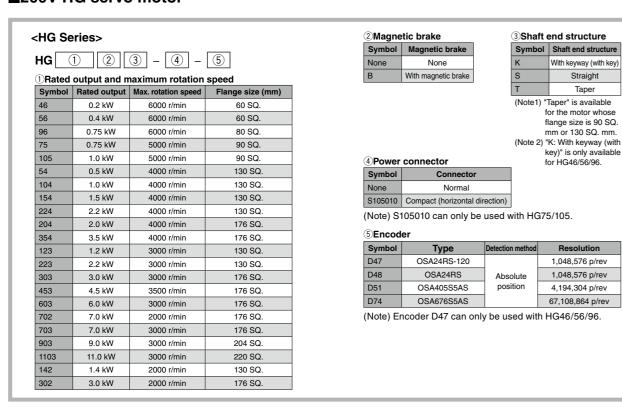

	Item	MDS-E-CV	MDS-EH-CV	MDS-EM/EMH- SPV3 built-in converter	MDS-EJV1/ V2 built-in converter	MDS-EJH-V1 built-in converter	MDS-EJSP/ SP2 built-in converter	MDS-EX-CVP Series
1 Base control	1.14 Power regeneration control	•	•	•	-	-	-	-
functions	1.15 Resistor regeneration control	-	-	-	•	•	•	-
TUTICUOTIS	1.16 PWM control	-	-	-	-	-	-	•
	4.5 Fan stop detection	•	•	•	•	•	•	•
	4.6 Open-phase detection	•	•	•	-	-	-	•
4 Protection	4.7 Contactor weld detection	•	•	•	•	•	•	•
function	4.10 Deceleration and stop function at power failure (Note 1)	•	•	-	-	-	-	•
	4.11 Retraction function at power failure (Note 2)	•	•	-	-	-	-	•
	5.1 Contactor control function	•	•	•	•	•	•	•
5 Sequence function	5.3 External emergency stop function	•	•	•	•	•	•	•
Tunction	5.5 High-speed READY ON sequence	•	•	•	-	-	-	•
6 Diagnosis	6.6 Power supply diagnosis display function	•	•	•	-	-	-	•
function	6.7 Drive unit diagnosis display function	•	•	•	•	•	•	•


(Note 1) The power backup unit and resistor unit option are required.

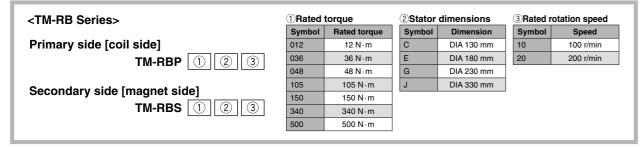

<Power Supply>

(Note 2) The power backup unit and capacitor unit option are required.

■MITSUBISHI CNC DRIVE SYSTEM LINES

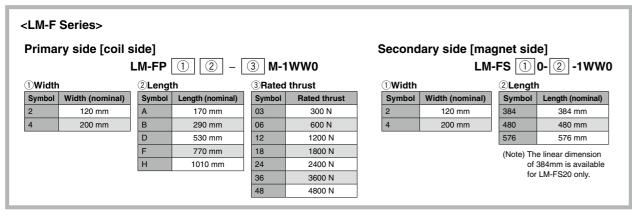


TYPE


DRIVE

SYSTEM

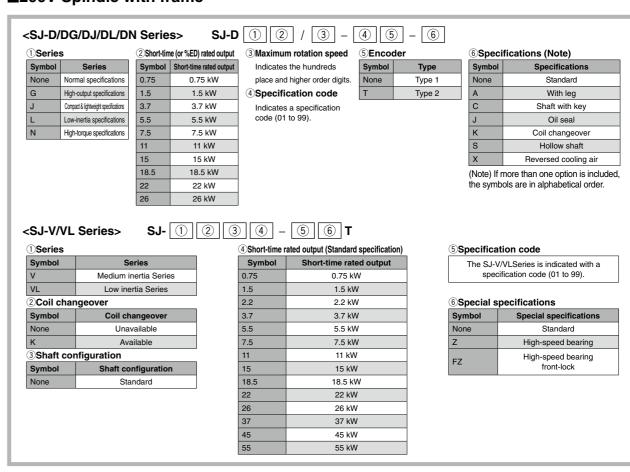
■200V HG servo motor



■200V Direct-drive motor

(Note) This explains the model name system of a direct-drive motor, and all combinations of motor types listed above do not exist.

■200V Linear servo motor



(Note) This explains the model name system of a linear servo motor, and all combinations of motor types listed above do not exist.

■SPINDLE MOTOR WITH FRAME LINES

Series	Feature	Application	Specifications
SJ-D	Standard specifications with general- purpose capabilities	Machining center Lathe	
SJ-DG	High-output and high-speed specifications with S3 rating added	Machining center	Flange type
SJ-DN	High-torque specifications with lower base rotation speed	Machining center Lathe	Flange type (hollow shaft) Type with leg
SJ-DL	Lower rotor inertia and higher acceleration/deceleration output	Tapping	
SJ-DJ	Compact & lightweight specifications suitable for popular machines	Machining center Lathe	Flange type Type with leg

■200V Spindle with frame

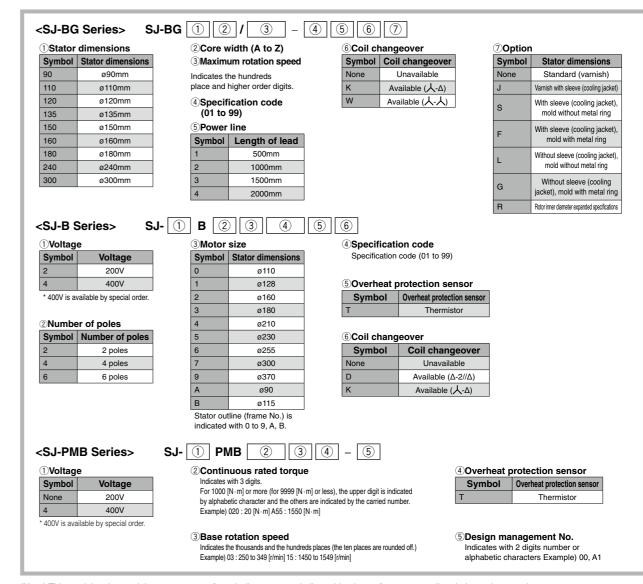
(Note) This explains the model name system of a spindle motor, and all combinations of motor types listed above do not exist.

TYPE TYPE

For the motors not shown in the following tables, contact your Mitsubishi Electric dealer.

■200V Flange type

Flange	Short-time rating	0.75kW	1.5kW	2.2kW	3.7kW	5.5kW	7.5kW	11kW	15kW	18.5kW	22kW	26kW	37kW	45kW	55kW
type	Max. rotation speed	0.75844	1.5844	Z.2RVV	3.7 KW	J.JRVV	7.5644	IIKW	ISKW	10.5844	ZZRVV	ZURVV	37KW	4000	JUNA
													V37-	V45-	V55-
	8,000								D15/	D18.5/	D22/	D26/	01ZT	01ZT	01ZT
	[r/min]								80-01	80-01	80-01	80-01	(6,000 [r/min])	(6,000 [r/min])	(4,500 [r/min])
Normal	10,000				D3.7/	D5.5/	D7.5/	D11/	V22-				[r/mmj)	[r/rninj)	[r/rminj)
specifications	[r/min]			V2.2-01T	100-01	100-01	100-01	100-01	06ZT						
	[,,,,,,,]				V3.7-	D5.5/									
	12,000				02ZT	120-01	D7.5/								
	[r/min]				(15,000	D5.5/	120-01								
					[r/min])	120-02									
Wide range	0.000						V11-09T	V18.5-		V22-09T	VK22-19ZT				
constant	6,000 [r/min]					V11-01T	V15-03T	03T	V22-05T	(4,500	(Coil				
specifications	[1/11111]						(9kW)	031		[r/min])	changeover)				
	10,000							DG11/							
High-output	[r/min]							100-03T							
specifications	12,000				DG3.7/	DG5.5/	DG7.5/	DG11/	DG15/						
	[r/min]				120-03T	120-04T	120-05T	120-03T	120-02T-K						
	40.000					DJ5.5/	DJ7.5/	DJ11/	DJ15/ 80-01						
Compact &	10,000 [r/min]					100-01	100-01	100-01	(8,000						
lightweight	[1/11111]					100-01	100-01	100-01	[r/min])						
specifications	12,000					DJ5.5/	DJ7.5/		[1,11111])						
	[r/min]					120-01	120-01								
		DL0.75/	DL1.5/												
	15,000	100-01	100-01	VL2.2-	VL11-	DL5.5/	DL7.5/								
	[r/min]	(10,000	(10,000	02ZT	02FZT	150-01T	150-01T								
Low-inertia		[r/min])	[r/min])		VL11-										
specifications	20,000				05FZT-S01	DL5.5/									
	[r/min]				(3kW)	200-01T									
	24,000				DL3.7/	DL5.5/									
	[r/min]				240-01T	240-05T									
High-torque	8,000						DN7.5/	DN11/	DN15/	DN18.5/					
specifications	[r/min]						80-01	80-01	80-01	80-01					


■200V Flange type (hollow shaft)

Flange type (hollow shaft)	Short-time rating Max. rotation speed	0.75kW	1.5kW	3.7kW	5.5k W	7.5kW	11kW	15kW	18.5kW	22kW	26kW
	8,000 [r/min]							D15/80-01	D18.5/80-01	D22/80-01	D26/80-01
Normal	10,000 [r/min]			D3.7/100-01	D5.5/100-01	D7.5/100-01	D11/100-01				
specifications	12,000 [r/min]				D5.5/120-01 D5.5/120-02	D7.5/120-01					
High-output	10,000 [r/min]						DG11/100-03T				
specifications	12,000 [r/min]			DG3.7/120-03T	DG5.5/120-04T	DG7.5/120-05T	DG11/120-03T				
Low-inertia	15,000 [r/min]	DL0.75/100-01 (10,000 [r/min])	DL1.5/100-01 (10,000 [r/min])		DL5.5/150-01T	DL7.5/150-01T					
specifications	20,000 [r/min]				DL5.5/200-01T						
	24,000 [r/min]			DL3.7/240-01T	DL5.5/240-05T						
High-torque specifications	8,000 [r/min]					DN7.5/80-01	DN11/80-01	DN15/80-01	DN18.5/80-01		

■200V Type with leg

Type with leg	Short-time rating Max. rotation speed	0.75kW	1.5kW	2.2kW	3.7kW	5.5kW	7.5kW	11kW	15kW	18.5kW	22kW	26kW	37kW	45kW	55kW
	8,000 [r/min]								V15- 09ZT	V18.5- 01ZT V18.5- 04ZT	V22- 01ZT V22- 04ZT	V26- 01ZT	V37- 01ZT (6,000 [r/min])	V45- 01ZT (6,000 [r/min])	V55- 01ZT (4,500 [r/min])
Normal specifications	10,000 [r/min]			V2.2-01T	D3.7/ 100-01	D5.5/ 100-01	D7.5/ 100-01	D11/ 100-01	V22- 06ZT						
	12,000 [r/min]				V3.7- 02ZT (15,000 [r/min])	D5.5/ 120-01 D5.5/ 120-02	D7.5/ 120-01								
Wide range constant output specifications	6,000 [r/min]					V11-01T	V11-09T V15-03T (9kW)	V18.5- 03T	V22-05T	V22-09T (4,500 [r/min])	VK22-19ZT (Coil changeover)				
High-torque specifications	8,000 [r/min]						DN7.5/ 80-01	DN11/ 80-01	DN15/ 80-01	DN18.5/ 80-01					

■200V Built-in spindle motor

(Note) This explains the model name system of a spindle motor, and all combinations of motor types listed above do not exist.

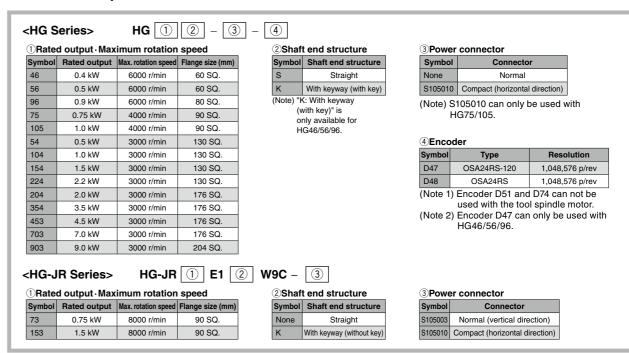
For the motors not shown in the following tables, contact your Mitsubishi Electric dealer.

For the encoder of the built-in spindle motor, refer to p.163 to 165 "Spindle side PLG serial output encoder (TS5690, MU1606 Series)".

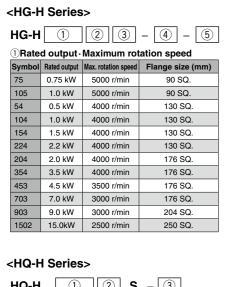
■200V SJ-BG Series

Motor type	Motor type	Stator outer diameter [mm]	Rotor inner diameter [mm]	Total length of motor [mm]	Coil	Continuous rated output [kW]	Short time rated output [kW]
	SJ-BG090A/300-01□(R)		33(35)	81	-	0.75	1.1
	SJ-BG090B/300-03□	89.5	33	100	-	1.2	1.5
	SJ-BG090D/300-03□	1	33	153	-	5.5	9
	SJ-BG110F/240-01□	109.5	42	240	-	3	5.5
	SJ-BG120A/200-01□(R)			135	Low-speed coil	1.5	3.7
	33-BG120A/200-01L(N)	119.5	41(52)	133	High-speed coil	1.5	5.5
	SJ-BG120C/200-01□(R)			195	_	2.2	3.7
	SJ-BG135D/200-01□	134.5	60	219	Low-speed coil	11	15
	5J-BG135D/200-01	134.5	00	219	High-speed coil	18.5	26
	SJ-BG150D/150-01□	149.5	55	170	-	3.7	5.5
	SJ-BG160B/150-01□(R)			153	_	3.7	7.5
Normal specifications	SJ-BG160D/150-01□(R)	159.5	60(70)	188	-	3.7	5.5
	SJ-BG160D/150-02□(R)			100	_	3.7	7.5
	SJ-BG180B/150-01□			212	Low-speed coil	11	18.5
	33-BG160B/130-01⊟			212	High-speed coil	18.5	30
	SJ-BG180D/150-01□			277	Low-speed coil	15	22
		179.5	75	211	High-speed coil	22	30
	SJ-BG180F/150-01□	179.5	/5	322	Low-speed coil	15	22
	33-BG1801/130-01⊟			322	High-speed coil	22	37
	SJ-BG180H/150-01□			377	Low-speed coil	15	26
	33-BG 160H/150-01L				High-speed coil	26	37
	SJ-BG240H/100-01□	239.5	101	460	Low-speed coil	18.5	30
	33-BG240H/100-01L	239.5	101	400	High-speed coil	26	45
	SJ-BG300L/080-01□	299.5	130	515	Low-speed coil	22	37
	33-BG300L/060-01L	299.5	130	313	High-speed coil	37	55
	SJ-BG160D/200-03□	159.5	70	197	Low-speed coil	7.5	15
	30-BG 100D/200-03□	159.5	'0	197	High-speed coil	15	22
High-speed	SJ-BG180F/200-01□	179.5	75	322	Low-speed coil	15	22
specifications	30-BG180F/200-01	179.5	/5	322	High-speed coil	22	37
	SJ-BG240H/130-01□	239.5	101	460	Low-speed coil	18.5	30
	SJ-BG240H/130-01L	209.0	101	400	High-speed coil	26	45

(Note) A value in brackets is for the rotor inner diameter of the motor type which has (R) in the end of the type name.


■200V SJ-B Series

Motor type	Motor type	Stator outer diameter [mm]	Rotor inner diameter [mm]	Total length of motor [mm]	Coil	Continuous rated output [kW]	Short time rated output [kW]
	SJ-2B4002T			120	-	0.4	0.75
	SJ-2B4004T	109.5	42	_	-	0.75	1.5
	SJ-2B4003T			160	-	1.5	2.2
	SJ-2B4501TK			320	Low-speed coil	7.5	11
	00-2D-3011K			320	High-speed coil		11
	SJ-2B4502TK	229.5		380	Low-speed coil	7.5	11
					High-speed coil	7.5	11
	SJ-2B4503TK		95	445	Low-speed coil	11	15
					High-speed coil	15	22
	SJ-2B4602TK			440	Low-speed coil	18.5	22
					High-speed coil		22
	SJ-2B4601TK			380	Low-speed coil	22	26
					High-speed coil		26
	SJ-2B6611TK			320	Low-speed coil	7.5	11
		254.5			High-speed coil	7.5 11	11 15
	SJ-2B6602TK			380	Low-speed coil High-speed coil	11	15
		-	110		Low-speed coil	11	15
	SJ-2B6605TK			440	High-speed coil		15
Normal specifications		1			Low-speed coil	15	22
	SJ-2B6603TK			445	High-speed coil		22
					Low-speed coil	7.5	11
	SJ-2B6705TK	299.5		400	High-speed coil	7.5	11
	0.1.000744714				Low-speed coil	11	15
	SJ-2B6711TK			405	High-speed coil	11	15
	SJ-2B6706TK			405	Low-speed coil	15	18.5
	5J-2B67061K		130		High-speed coil		18.5
	SJ-2B6720TK			300	Low-speed coil	15	22
	33-2B0720TK	299.5			High-speed coil	22	26
	SJ-2B6704TK			470	Low-speed coil	15	22
	00 250704110				High-speed coil		30
	SJ-2B6709TK			450	Low-speed coil	15	22
					High-speed coil		30
	SJ-2B6721TK		145	390	Low-speed coil	18.5	22
					High-speed coil		30
	SJ-2B6905TK			465	Low-speed coil	22 22	26 26
		1			High-speed coil Low-speed coil	15	22
	SJ-2B6908TK			545	High-speed coil		30
		369.5	165		Low-speed coil	15	22
	SJ-2B6906TK			555	High-speed coil		37
		1			Low-speed coil	25	30
	SJ-2B6914TK			520	High-speed coil		30


■200V SJ-PMB Series

	Motor type	Motor type	Stator outer diameter [mm]	Rotor inner diameter [mm]	Total length of motor [mm]	Coil	Continuous rated output [kW]	Short time rated output [kW]
	IPM motor	SJ-PMB02215T-02	139.5	60	150	-	3.5	5.5
		SJ-PMB04412T-B0	179.5	70.6	225	Low-speed coil	5.5	7.5
					225	High-speed coil	5.5	7.5
		SJ-PMB14007T-01	254.5	95	250	Low-speed coil	11	15
					200	High-speed coil	11	15

■200V Tool spindle motor

■400V HG-H servo motor

None						
th magnetic brake						
(Note) Magnetic brakes cannot						
With magnetic brake (Note) Magnetic brakes cannot be used for HG-H1502.						

Symbol	Connector
None	Normal
S105010	Compact (horizontal direction)

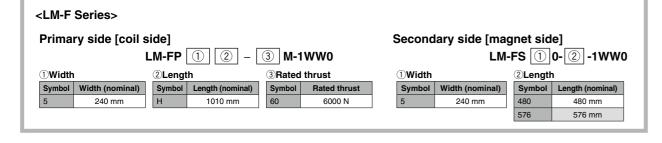
⑤ Encoder

③Shaft end structure					
Symbol	Shaft end structure				
S	Straight				
Т	Taper				
(Note) "7	Taper" is available				

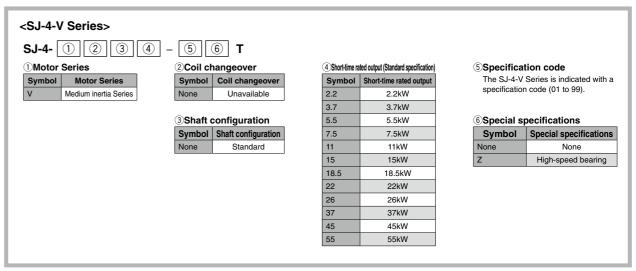
for the motor whose

mm or 130 SQ, mm.

Symbol	Туре	Detection method	Resolution		
D48	OSA24RS		1,048,576 p/rev		
D51	OSA405S5AS	Absolute position	4,194,304 p/rev		
D74	OSA676S5AS	position	67,108,864 p/rev		


HQ-H 1 2 S - 3

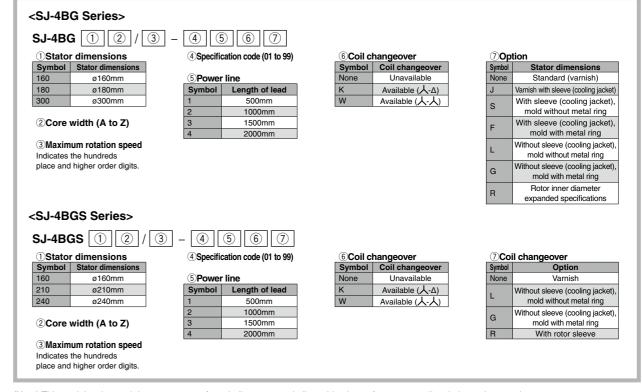
URated output · Maximum rotation speed							
Symbol	Rated output	Max. rotation speed	Flange size (mm)				
903	9.0kW	3000 r/min	220 SQ.				
1103	11.0kW	3000 r/min	220 SQ.				


(2 Magnetic brake							
	Symbol	Magnetic brake						
	None	None						
	В	With magnetic brake						

3 Enco	oaer		
Symbol	Туре	Detection method	Resolution
D48	OSA24RS		1,048,576 p/rev
D51	OSA405S5AS	Absolute position	4,194,304 p/rev
D74	OSA676S5AS	position	67,108,864 p/rev

■400V Linear servo motor

■400V Spindle motor with frame



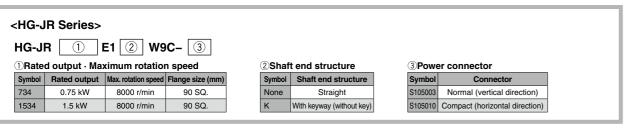
(Note) This explains the model name system of a spindle motor, and all combinations of motor types listed above do not exist.

■400V SJ-4-V Series

Flange type With leg	Short-time rating Max. rotation speed	2.2kW	3.7kW	5.5kW	7.5kW	9kW	11kW	15kW	18.5kW	22kW	26kW	37kW	45kW	55kW
	6,000 [r/min]						V11-18T	V18.5-14T		V22-15T		V37-04ZT	V45-02T (4,500 [r/min])	V55-03T (3,450 [r/min])
Normal	8,000 [r/min]			V5.5-07T	V7.5-12T			V22-18ZT						
specifications	10,000 [r/min]	V2.2-03T	V3.7-03T								V26-08ZT			
	12,000 [r/min]				V7.5-13ZT									
Wide range constant output specifications	6,000 [r/min]					V15-20T		V22-16T						

■400V Built-in spindle motor

(Note) This explains the model name system of a spindle motor, and all combinations of motor types listed above do not exist.


■400V SJ-4BG Series

Motor type	Motor type	Stator outer diameter [mm]	Rotor inner diameter [mm]	Total length of motor [mm]	Coil	Continuous rated output [kW]	Short time rated output [kW]
Normal specificatoins	SJ-4BG160D/150-01	159.5	60	188	-	3.7	7.5
	SJ-4BG180F/150-01	179.5	75	322	Low-speed coil	7.5	11
					High-speed coil	7.5	11
	S I 4BC300C/090 03	299.5	130	295	Low-speed coil	11	15
	SJ-4BG300C/080-02	≥99.5			High-speed coil	15	22

■400V SJ-4BGS Series

Motor type	Motor type	Stator outer diameter [mm]	Rotor inner diameter [mm]	Total length of motor [mm]	Coil	Continuous rated output [kW]	Short time rated output [kW]
	SJ-4BGS160B/300-01	159.5	80.9	194	-	65	70
	SJ-4BGS210B/120-01	209.5	84	180	Low-speed coil	22	24
SPM motor	33-4BG3210B/120-01	209.5	04	100	High-speed coil	22	24
	SJ-4BGS240B/120-01	239.5	100	220	Low-speed coil	27	37
	3J-4BG3240B/12U-U1	239.5	100	220	High-speed coil	27	37

■400V Tool spindle motor

SERVO MOTOR 200V

■HG Series

Motor type			HG46	HG56	HG96
	1-axis type	MDS-E-V1-	20	20	20
	O avia tuma	MDS-E-V2-	20	20	20
	2-axis type	NIDS-E-V2-	20	20	40
Compatible	3-axis type	MDS-E-V3-	20	20	20
drive unit	3-axis type	MD2-E-43-	20	20	40
	Multi-hybrid type		_	_	10040, 16040, 16040S
	Regenerative	MDS-EJ-V1-	10	15	30
	resistor type	MDS-EJ-V2-	_	_	30
Output Stall torque Max. torque		[N·m]	0.64	5.0	2.4
Rated output		[kW]	0.2	0.4	0.75
Max. rotation :	speed	[r/min]		6000	
Motor inertia		[×10 ⁻⁴ kg·m ²]	0.234	0.379	1.27
Motor inertia v	vith a brake	[×10 ⁻⁴ kg·m ²]	0.261	0.407	1.37
Degree of prot is excluded.)	ection (The shaft-the	rough portion		IP67	
	ke, Straight shaft)	[mm]	60 SQ.	60 SQ.	80 SQ. (a)
Flange fitting		[mm]	ø50	ø50	ø70
Shaft diamete		[mm]	ø14	ø14	ø19
Mass (with a b	orake)	[kg]	1.2(1.6)	1.6(2.0)	2.9(3.7)
Absolute position encoder compatible drive unit	1,048,576[p/rev]	(D47)	E, EJ	E, EJ	E, EM, EJ

Motor type		HG75	HG105	HG54	HG104	HG	154	
	1-axis type	MDS-E-V1-	20	20	40	40	80	
	2 avia tupo	MDS-E-V2-	20	20	40	40	80	
	2-axis type	MDS-E-V2-	40	40	80	80	160	-
	O avia tuma	MDS-E-V3-	20	20	40	40	80	40
Compatible	3-axis type	MD2-E-V3-	40	40	80	80	80	40
drive unit	Multi-hybrid type	MDS-EM-SPV3-	10040, 16040, 16040S	10040, 16040, 16040S	10040, 16040, 16040S, 10080, 16080, 20080	10040, 16040, 16040S, 10080, 16080, 20080	10080, 16080, 20080, 200120, 320120	-
	Regenerative	MDS-EJ-V1-	30	30	30	40	8	0
	resistor type	MDS-EJ-V2-	30	30	30	40	-	-
Output Stall torque Max. torque	8	[N·m]	8.0	11.0	13.0	23.3	9.0	7.0
Rated output		[kW]	0.75	1.0	0.5	1.0	1.	5
Max. rotation s	speed	[r/min]	5000	5000	4000	4000	40	00
Motor inertia		[×10 ⁻⁴ kg·m ²]	2.62	5.12	6.13	11.9	17	.8
Motor inertia w	vith a brake	[×10 ⁻⁴ kg·m ²]	2.70	5.20	8.26	14.0	20	.0
Degree of protection	on (The shaft-through po	ortion is excluded.)	IP67	IP67	IP67	IP67	IP	67
Outline dimens (Without a bral D48 encoder)	sion drawing ke, Straight shaft,		90 SQ.	90 SQ.	130 SQ.	130 SQ.	130	so.
(Note) The tota 3.5mm longer when using a l encoder.	al length will be D51or D74	[mm]	127.5	163.5	118.5	140.5	162.	5
Flange fitting of	diameter	[mm]	ø80	ø80	ø110	ø110	ø1	
Shaft diameter	r	[mm]	ø14	ø14	ø24	ø24	ø2	24
Mass (with a b	rake)	[kg]	2.6(3.6)	4.4(5.3)	4.8(6.7)	6.5(8.5)	8.3(1	1.0)
Absolute position	67,108,864 [p/rev	v] (D74)	E	E	E	E	E	
encoder compatible	4,194,304 [p/rev]	(D51)	E	E	E	E	E	E
		(D48)	EM. EJ	EM. EJ	EM. EJ	EM, EJ	EM. EJ	

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Stall torque is the maximum torque that can be output continuously when the motor rotation is stopped.

■HG Series

	Motor type		HG224	HG	204		HG354	
	1-axis type	MDS-E-V1-	80	-	80	-	_	160
	2-axis type	MDS-E-V2-	80 160	-	80 160	-	-	160 160W
	3-axis type	MDS-E-V3-	80	-	80	-	-	-
Compatible drive unit	Multi-hybrid type	MDS-EM-SPV3-	10080, 16080, 20080, 200120, 320120	-	10080, 16080, 20080, 200120, 320120	-	200120, 320120	-
	Regenerative	MDS-EJ-V1-	80	80	-	100	_	-
	resistor type	MDS-EJ-V2-	-	-	-	-	-	-
Output Stall torque Max. torque		[N·m]	46.5	42.0	47.0	65.0	75.0	22.5
Rated output		[kW]	2.2	2	.0		3.5	
Max. rotation s	speed	[r/min]	4000	40	00	3500	40	00
Motor inertia		[×10 ⁻⁴ kg·m ²]	23.7	38	3.3		75.0	
Motor inertia w	vith a brake	[×10 ⁻⁴ kg·m ²]	25.9	47			84.7	
Degree of protection	on (The shaft-through po	ortion is excluded.)	IP67	IP	67		IP67	
D48 encoder)	ke, Straight shaft,	[mm]	130 SQ.	176			176 SQ.	
(Note) The tota 3.5mm longer when using a l encoder.	al length will be D51or D74	ţy	184.5	143.	5		183.5	
Flange fitting of	liameter	[mm]	ø110	ø11	4.3		ø114.3	
Shaft diameter	r	[mm]	ø24	Ø	35		ø35	
Mass (with a b	rake)	[kg]	10.0(12.0)	12.0(19.0(25.0)	
Absolute position	67,108,864 [p/re	- ' '	E	-	E	-	-	
encoder compatible drive unit	4,194,304 [p/revi		E EM, EJ	EJ	E EM	EJ	EM	E

	Motor type		HG123	HG223	HG303	HG	453
	1-axis type	MDS-E-V1-	20	40	80	-	160
	2-axis type	MDS-E-V2-	20	40	80	_	160
			40	80	160		160W
Compatible drive unit	3-axis type	MDS-E-V3-	20 40	40 80	80	-	-
unve unit	Multi-hybrid type	MDS-EM-SPV3-	10040, 16040, 16040S	10040, 16040, 16040S, 10080, 16080, 20080	10080, 16080, 20080, 200120, 320120	200120, 320120	-
	Regenerative	MDS-EJ-V1-	40	40	80	-	-
	resistor type	MDS-EJ-V2-	40	40	-	-	-
Output Stall torque Max. torque		[N·m]	7.0 17.0	32.0	64.0	90.0	37.2
Rated output		[kW]	1.2	2.2	3.0	4	.5
Max. rotation s	speed	[r/min]	3000	3000	3000	35	000
Motor inertia		[×10 ⁻⁴ kg·m ²]	11.9	23.7	75.0	11:	2.0
Motor inertia w	vith a brake	[×10 ⁻⁴ kg·m ²]	14.0	25.9	84.7	12	2.0
Degree of protection	on (The shaft-through po	ortion is excluded.)	IP67	IP67	IP67	IP	67
D48 encoder)	sion drawing ke, Straight shaft, al length will be	[mm]	130 SQ.	130 SQ.	176 SQ.	1 <u>76</u>	<u>so.</u>
3.5mm longer when using a l encoder.			140.5	184.5	103.3		
Flange fitting o		[mm]	ø110	ø110	ø114.3		14.3
Shaft diameter	r	[mm]	ø24	ø24	ø35		35
Mass (with a b		[kg]	6.5(8.5)	10.0(12.0)	19.0(25.0)	25.0((31.0)
Absolute position	67,108,864 [p/re	ev] (D74)	E	E	E	-	
encoder compatible drive unit	4,194,304 [p/rev 1,048,576 [p/rev	- ' '	E EM. EJ	E EM. EJ	E EM. EJ	EM	E.

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Stall torque is the maximum torque that can be output continuously when the motor rotation is stopped.

■HG Series

	Motor type		HG603	HG702	HG703	HG903	HG1103
	1-axis type	MDS-E-V1-	160	160	160W	320	320W
	2-axis type	MDS-E-V2-	160	160	160W	-	-
Compatible	3-axis type	MDS-E-V3-	-	-	-	-	-
drive unit	Multi-hybrid type	MDS-EM-SPV3-	-	200120, 320120	-	-	-
	Regenerative	MDS-EJ-V1-	-	-	-	-	-
	resistor type	MDS-EJ-V2-	_	-	-	-	_
Output Stall torque Max. torque		[N·m]	152.0 45.0	130.0	49.0	58.8	95.5
Rated output		[kW]	6.0	7.0	7.0	9.0	11.0
Max. rotation :	speed	[r/min]	3000	2000	3000	3000	3000
Motor inertia		[×10 ⁻⁴ kg·m ²]	154.0	154.0	154.0	196.0	315.0
Motor inertia v	vith a brake	[×10 ⁻⁴ kg·m ²]	164.0	164.0	164.0	206.0	336.0
Degree of protecti	on (The shaft-through po	ortion is excluded.)	IP67	IP67	IP67	IP67	IP67
D48 encoder)	ike, Straight shaft,	[mm]	176 SQ.	176 SQ.	176 SQ.	204 SQ.	220 SQ.
(Note) The tot 3.5mm longer when using a encoder.		, ₁	263.5	263.5	263.5	330	438
Flange fitting		[mm]	ø114.3	ø114.3	ø114.3	ø180	ø200
Shaft diamete	r	[mm]	ø35	ø35	ø35	ø42	ø55
Mass (with a b	orake)	[kg]	32.0(38.0)	32.0(38.0)	32.0(38.0)	43.0(49.0)	86.0(97.0)
Absolute position encoder compatible drive unit	67,108,864 [p/rev] 4,194,304 [p/rev] 1,048,576 [p/rev]] (D51)	E	E E, EM	Е	E	E

	Motor type		HG142	HG302
	1-axis type	MDS-E-V1-	20	40
	0	MD0 E V0	20	40
	2-axis type	MDS-E-V2-	40	80
	O avia tuma	MDC E Vo	20	40
Compatible	3-axis type	MDS-E-V3-	40	80
drive unit	Multi-hybrid type	MDS-EM-SPV3-	10040, 16040, 16040S	10040, 16040, 16040S, 10080, 16080, 20080
	Regenerative	MDS-EJ-V1-	40	40
	resistor type	MDS-EJ-V2-	40	40
Output Stall torque Max. torque	8	[N·m]	11.0 26:5	50.0
Rated output		[kW]	1.4	3.0
Max. rotation s	speed	[r/min]	2000	2000
Motor inertia		[×10 ⁻⁴ kg·m ²]	17.8	75.0
Motor inertia w		[×10 ⁻⁴ kg·m ²]	20.0	84.7
Degree of protection	on (The shaft-through po	ortion is excluded.)	IP67	IP67
D48 encoder)	ke, Straight shaft,	[mm]	130 SQ.	176 SQ.
Flange fitting of	liameter	[mm]	ø110	ø114.3
Shaft diameter		[mm]	ø24	ø35
Mass (with a b	rake)	[kg]	8.3(11.0)	19.0(25.0)
Absolute position	67,108,864 [p/re	v] (D74)	E	E
encoder compatible 4,194,304 [p/rev drive unit 1,048,576 [p/rev		` '	E, EM, EJ	E, EM, EJ

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Stall torque is the maximum torque that can be output continuously when the motor rotation is stopped.

SERVO MOTOR/DIRECT DRIVE MOTOR/LINEAR SERVO MOTOR 200V

DIRECT-DRIVE MOTOR 200V

■TM-RB Series

Matautuma	Primary	side type	TM-RBP012C20	TM-RBP036E20	TM-RBP048G20	TM-RBP105G10
Motor type	Secondary	y side type	TM-RBS012C20	TM-RBS036E20	TM-RBS048G20	TM-RBS105G10
	1-axis type	MDS-E-V1-	40	80	80	160
Compatible	2-axis type	MDS-E-V2-	40	80	80	160
drive unit	Regenerative resistor type	MDS-EJ-V1-	40	80	80	100
Output						260
Rated torque (li	quid-cooling)	[N·m] ·		400	144	
Max. torque		-		108		105
			36	36	48	
		-	12			
Rated output		[W]	252	754	1005	1100
Max. rotation s	Max. rotation speed [r/min]		500	500	500	250
Motor inertia			22	127	280	395
Degree of prof	tection		IP00	IP00	IP00	IP00
Outline dimension drawing		[mm]				
			DIA 130	DIA 100 DIA 180	DIA 130 DIA 230	DIA 130 DIA 230
Mass [kg]	Primary side (co		3.9	7.1	10	13
iviass [Kg]	Secondary side	(magnet)	1.7	3.7	5	7

Motor type Primary side type		side type	TM-RBP105G20	TM-RBP150G20	TM-RBP340J20	TM-RBP500J20
Motor type	Secondary	y side type	TM-RBS105G20	TM-RBS150G20	TM-RBS340J20	TM-RBS500J20
	1-axis type	MDS-E-V1-	160	160	320	320W
Compatible	2-axis type	MDS-E-V2-	160	160	_	-
drive unit Regenerative resistor type		MDS-EJ-V1-	-	-	-	-
Output Rated torque (liquid-cooling) Max. torque		[N·m]	260	375	850	1280
			105 260	150		
Rated output [W]			2199	3141	7120	10471
Max. rotation speed [r/min]		500	500	400	400	
	Motor inertia [x10 ⁻⁴ kg·m ²] Degree of protection		395 IP00	510 IP00	2778 IP00	3538 IP00
Outline dimension drawing		[mm]	DIA 130 DIA 230	DIA 130 DIA 230	DIA 205	DIA 205
Mass [kg]	Primary side (co		13	16	DIA 330	DIA 330
. 31	Secondary side	(magnet)	7	9	20	26

(Note 1) The encoder should be procured by the user.

(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

LINEAR SERVO MOTOR 200V

■LM-F Series

Motor type		side type y side type	LM-FP2A-03M-1WW0 LM-FS20 1WW0	LM-FP2B-06M-1WW0 LM-FS20 1WW0	LM-FP2D-12M-1WW0 LM-FS201WW0	LM-FP2F-18M-1WW0 LM-FS20 1WW0
	1-axis type	MDS-E-V1-	40	40	80	160
	- axis type	IVID'S-L-V I-	40	40	00	160W 160
Compatible	2-axis type	MDS-E-V2-	40	40	80	160W
drive unit	3-axis type	MDS-E-V3-	40	40	80	-
	Regenerative	MDS-EJ-V1-	40 40	40	80	_
	resistor type	MDS-EJ-V2-	40	40	-	-
Thrust force Continuous (natural-cooling) Continuous (liquid-cooling) Maximum] [[N]	900 150_300	300 600	3600 1200 600	1800
D		7.17			4000	4000
Rated thrust Maximum spee	ad (Note 1)	[N] [m/s]	300 2.0	600 2.0	1200 2.0	1800 2.0
Magnetic attrac	_ ' _ '	[N]	2500	4500	9000	13500
Degree of prote			IP00	IP00	IP00	IP00
Outline dimension drawing		[mm]	170 384 480 576 1000 120 19.5	290 384 480 576 1000 11000 120 19.5	530 384 480 576 1000	770 384 480 576 1000
Mass [kn]	Primary side (c		5 5.8(384mm)	9 5.8(384mm)	120 120 18 5.8(384mm)	120 120 27 5.8(384mm)
Mass [kg] Secondary side (magnet)		7.1(480mm) 9.0(576mm)	7.1(480mm) 9.0(576mm)	7.1(480mm) 9.0(576mm)	7.1(480mm) 9.0(576mm)	
			,	,	0.0(0.7 0)	,
Motor type		side type	LM-FP4B-12M-1WW0	LM-FP4D-24M-1WW0	LM-FP4F-36M-1WW0	LM-FP4H-48M-1WW0
Motor type	Secondary	y side type	LM-FP4B-12M-1WW0 LM-FS401WW0	LM-FP4D-24M-1WW0 LM-FS40- 1WW0	LM-FP4F-36M-1WW0 LM-FS40-□-1WW0	LM-FP4H-48M-1WW0 LM-FS40-□-1WW0
Motor type			LM-FP4B-12M-1WW0	LM-FP4D-24M-1WW0	LM-FP4F-36M-1WW0	LM-FP4H-48M-1WW0
	Secondary	y side type	LM-FP4B-12M-1WW0 LM-FS401WW0	LM-FP4D-24M-1WW0 LM-FS40- 100 160 160W	LM-FP4F-36M-1WW0 LM-FS40-□-1WW0 320	LM-FP4H-48M-1WW0 LM-FS401WW0 320
Compatible	Secondary 1-axis type 2-axis type	y side type MDS-E-V1- MDS-E-V2-	LM-FP4B-12M-1WW0 LM-FS401WW0 80	LM-FP4D-24M-1WW0 LM-FS40- 100 160 160W 160 160W	LM-FP4F-36M-1WW0 LM-FS40-□-1WW0 320 320W	LM-FP4H-48M-1WW0 LM-FS40-[1WW0 320 320W
Compatible	Secondary 1-axis type 2-axis type 3-axis type	y side type MDS-E-V1- MDS-E-V2- MDS-E-V3-	LM-FP4B-12M-1WW0 LM-FS40	LM-FP4D-24M-1WW0 LM-FS40- 1WW0 160 160W	LM-FP4F-36M-1WW0 LM-FS401WW0 320 320W	LM-FP4H-48M-1WW0 LM-FS401WW0 320 320W
Compatible	Secondary 1-axis type 2-axis type	y side type MDS-E-V1- MDS-E-V2-	LM-FP4B-12M-1WW0 LM-FS401WW0 80	LM-FP4D-24M-1WW0 LM-FS40- 100 160 160W 160 160W -	LM-FP4F-36M-1WW0 LM-FS40-□-1WW0 320 320W -	LM-FP4H-48M-1WW0 LM-FS40- 1-1WW0 320 320W -
Compatible drive unit Thrust force Continuous (nat Continuous (liqu Maximum	Secondary 1-axis type 2-axis type 3-axis type Regenerative resistor type tural-cooling)	MDS-E-V1- MDS-E-V2- MDS-E-V3- MDS-E-J-V1- MDS-E-J-V2-	LM-FP4B-12M-1WW0 LM-FS40	LM-FP4D-24M-1WW0 LM-FS40- 16W 160 160W 160 160W -	LM-FP4F-36M-1WW0 LM-FS40- 1WW0 320 320W	LM-FP4H-48M-1WW0 LM-FS401WW0 320 320W
Compatible drive unit Thrust force Continuous (nat Continuous (liqu Maximum	Secondary 1-axis type 2-axis type 3-axis type Regenerative resistor type tural-cooling)	y side type MDS-E-V1- MDS-E-V2- MDS-E-V3- MDS-EJ-V1- MDS-EJ-V2- [N]	LM-FP4B-12M-1WW0 LM-FS40- 1WW0 80 80 80 80	LM-FP4D-24M-1WW0 LM-FS40- 1-1WW0 160 160W 160 7200 12002400	LM-FP4F-36M-1WW0 LM-FS40 1WW0 320 320W 10800 1800 3600	LM-FP4H-48M-1WW0 LM-FS40- 1-1WW0 320 320W 14400 2400 4800
Compatible drive unit Thrust force Continuous (nat Continuous (liqu Maximum Rated thrust Maximum spee	Secondary 1-axis type 2-axis type 3-axis type Regenerative resistor type tural-cooling) uid-cooling)	y side type MDS-E-V1- MDS-E-V2- MDS-E-V3- MDS-E-J-V1- MDS-E-J-V2- [N] [N] [m/s]	LM-FP4B-12M-1WW0 LM-FS40-□-1WW0 80 80 80 80 600 1200 1200 2.0	LM-FP4D-24M-1WW0 LM-FS40- 1-1WW0 160 160W 160 7200 1200 2400 2400 2.0	LM-FP4F-36M-1WW0 LM-FS40	LM-FP4H-48M-1WW0 LM-FS40- 1-1WW0 320 320W 14400 2400 4800 2.0
Compatible drive unit Thrust force Continuous (nat Continuous (liqu Maximum Rated thrust Maximum spee Magnetic attrace	Secondary 1-axis type 2-axis type 3-axis type Regenerative resistor type tural-cooling) uid-cooling)	y side type MDS-E-V1- MDS-E-V2- MDS-E-V3- MDS-EJ-V1- MDS-EJ-V2- [N]	LM-FP4B-12M-1WW0 LM-FS40-□-1WW0 80 80 80 80 - - 3600 1200	LM-FP4D-24M-1WW0 LM-FS40- 1-1WW0 160 160W 160 7200 12002400	LM-FP4F-36M-1WW0 LM-FS40 1WW0 320 320W 10800 1800 3600	LM-FP4H-48M-1WW0 LM-FS40- 1-1WW0 320 320W 14400 2400 4800 2.0 36000 IP00
Compatible drive unit Thrust force Continuous (nat Continuous (liqu	Secondary 1-axis type 2-axis type 3-axis type Regenerative resistor type tural-cooling) uid-cooling)	y side type MDS-E-V1- MDS-E-V2- MDS-E-V3- MDS-E-J-V1- MDS-E-J-V2- [N] [N] [m/s]	LM-FP4B-12M-1WW0 LM-FS40	LM-FP4D-24M-1WW0 LM-FS40	LM-FP4F-36M-1WW0 LM-FS40- 1WW0 320 320W	LM-FP4H-48M-1WW0 LM-FS40- 1-1WW0 320 320W 14400 4800 2.0 36000 IP00 Primary side Secondary sid
Compatible drive unit Thrust force Continuous (nat Continuous (liqu Maximum Rated thrust Maximum spee Magnetic attract Degree of protes)	Secondary 1-axis type 2-axis type 3-axis type Regenerative resistor type tural-cooling) uid-cooling)	y side type MDS-E-V1- MDS-E-V2- MDS-E-V3- MDS-EJ-V1- MDS-EJ-V2- [N] [N] [m/s] [N]	LM-FP4B-12M-1WW0 LM-FS40	LM-FP4D-24M-1WW0 LM-FS40- 1-1WW0 160 160W 160 160W	LM-FP4F-36M-1WW0 LM-FS40- 1-1WW0 320 320W	LM-FP4H-48M-1WW0 LM-FS40-[]-1WW0 320 320W
Compatible drive unit Thrust force Continuous (nat Continuous (liquid Maximum) Rated thrust Maximum spee Magnetic attract Degree of protein continuous (liquid Maximum) Outline dimension drawing	Secondary 1-axis type 2-axis type 3-axis type Regenerative resistor type tural-cooling) uid-cooling)	y side type MDS-E-V1- MDS-E-V2- MDS-E-V3- MDS-EJ-V1- MDS-EJ-V2- [N] [N] [m/s] [m/s]	LM-FP4B-12M-1WW0 LM-FS40	LM-FP4D-24M-1WW0 LM-FS401WW0 160 160W 160 160W	LM-FP4F-36M-1WW0 LM-FS40- 1-1WW0 320 320W	LM-FP4H-48M-1WW0 LM-FS40- 1-1WW0 320 320W
Compatible drive unit Thrust force Continuous (nat Continuous (liqu Maximum Rated thrust Maximum spee Magnetic attract Degree of protes)	Secondary 1-axis type 2-axis type 3-axis type Regenerative resistor type tural-cooling) uid-cooling) dd (Note 1) stion force ection	MDS-E-V1- MDS-E-V2- MDS-E-V1- MDS-E-V2- MDS-E-V2- MDS-E-V2- [N] [N] [m/s] [N] [m/s] [N] [mm]	LM-FP4B-12M-1WW0 LM-FS40	LM-FP4D-24M-1WW0 LM-FS40- 1-1WW0 160 160W 160 160W	LM-FP4F-36M-1WW0 LM-FS40- 1-1WW0 320 320W	LM-FP4H-48M-1WW0 LM-FS40- 1-1WW0 320 320W

(Note 1) The maximum speed in actual use is either the linear scale's maximum speed or this specified value, whichever is smaller. (Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

■LM-F Series (Dual-axis drive unit)

Matantana	Primary s	side type	LM-FP2A-03M-1WW0	LM-FP2B-06M-1WW0	LM-FP2D-12M-1WW0	LM-FP2F-18M-1WW0	
Motor type	Secondary	side type	LM-FS201WW0	LM-FS201WW0	LM-FS201WW0	LM-FS201WW0	
	1-axis type	MDS-E-V1-	80	80	160	320	
	- uxio type				160W	320W	
Compatible drive unit	2-axis type	MDS-E-V2-	80	80	160 160W	_	
unive unit	Regenerative				16044		
	resistor type MDS-EJ-V1-		80	80	-	-	
Thrust force				7200	10800		
Continuous (na	Continuous (natural-cooling) Continuous (liquid-cooling)			3600	2400	3600	
			300_600	600 1200	1200	1800	
Rated thrust		[N]	600	1200	2400	3600	
Maximum spe	ed (Note 1)	[m/s]	2.0	2.0	2.0	2.0	
Magnetic attract	ion force (per motor)	[N]	2500	4500	9000	13500	
Degree of prot	ection		IP00	IP00	IP00	IP00	
Outline dimension drawing		[mm]	Primary side Secondary side 384 480 576 1000 120 120 120	290 384 480 576 120 120 120	530 384 480 576	770 384 480 576	
	Primary side (co	SIN .	5×2	9×2	120 120 18x2	27×2	
	r illiary side (co	лі)		5.8(384mm)	5.8(384mm)		
Mass [kg]	Secondary side	5.8(384mm) ndary side (magnet) 7.1(480mm) 9.0(576mm)		7.1(480mm) 9.0(576mm)	7.1(480mm) 9.0(576mm)	5.8(384mm) 7.1(480mm) 9.0(576mm)	

Matautur	Primary	side type	LM-FP4B-12M-1WW0	LM-FP4D-24M-1WW0		
Motor type	Secondar	y side type	LM-FS401WW0	LM-FS40-□-1WW0		
	1-axis type	MDS-E-V1-	160 160W	320 320W		
Compatible drive unit 2-axis type		MDS-E-V2-	160 160W	-		
	Regenerative resistor type	MDS-EJ-V1-	-	-		
				14400		
Thrust force Continuous (na Continuous (lid Maximum		[N]	7200 1200	4800 2400		
Rated thrust [N]			2400	4800		
Maximum speed (Note 1) [m/s]			2.0	2.0		
Magnetic attract	ion force (per motor	r) [N]	9000	18000		
Degree of prot	tection		IP00	IP00		
Outline dimension drawing		[mm]	Primary side Secondary side 480 576 290 1000 19.5 200 19.5	Primary side Secondary side 480 576 530 19,5		
	Primary side (c	oil)	14×2	28×2		
Mass [kg]	Secondary side	e (magnet)	13.5(480mm) 16.0(576mm)	13.5(480mm) 16.0(576mm)		

(Note 1) The maximum speed in actual use is either the linear scale's maximum speed or this specified value, whichever is smaller. (Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

SPINDLE MOTOR 200V

■SJ-D Series (Normal specifications)

Motor type			SJ-D3.7/100-01	SJ-D5.5/100-01	SJ-D5.5/120-01		SJ-D5.5/120-02	160 200 16080(L) - 6040, 16080, 16040S 20080, 200120			
	1-axis type	MDS-E-SP-	80	80	80	-	160	200			
0	2-axis type	MDS-E-SP2-	80 16080(M)	80 16080(M)	80 16080(M)	-	16080(L)	-			
Compatible drive unit	Multi-hybrid type	MDS-EM-SPV3-	-	10040, 10080, 16040S	10040, 10080, 16040S	10040, 10080	16040, 16080, 16040S	20080, 200120			
	Regenerative resistor type	MDS-EJ-SP-	80	100	100	-	-	-			
Output Acceleration/Deceleration %ED rating Short-time rating Continuous rating		8W 6 4 3.7 2.2 2.2 0 1500 6000 10000 rmin Short-time (15min)	5.5 6 4 1500 6000 10000 1500 6000 10000 1500 f/min	kW 5.5 6 4 3.7 2 0 1500 6000 12000 r/min Short-time (30min)	kW 15 5.5 10 7.5 5.5 10 7.5 5.5 10 7.5 10 12000 2000 8000 12000 r/min %ED rating (25%ED)	5.5.5 3.7 5 0 2000 2800 6000 8000 12000 r/min	15 10 5.5 3.7 5 0 1700 4500 8000 12000 2800 r/min				
Standard output	t during acceleration/dec	celeration [kW]	3.7	5.5	5.5	7.5	9.2	10.4			
, ,		(Note 2) [kW]	4.4	6.6	6.6	9	11.0	12.5			
Continuous base rotation speed [r/min]		[r/min]	1500	1500	1500		2800				
Max. rotation s	speed in constant outp	ut range [r/min]	6000	6000	6000		8000				
Maximum rotation speed [r/min]		10000	10000	12000		12000					
Continuous rated torque [N·m]		14.0	23.6	23.6		12.6					
Motor inertia		[kg·m²]	0.0074	0.013	0.013		0.0074				
Degree of protect	tion (The shaft-through por	rtion is excluded.)	IP54	IP54	IP54	IP54					
Outline dimension drawing (flange type) [mm]		174 SQ.	174 SQ.	174 SQ.	174 SQ.						
Flange fitting diameter [mm]		ø150	ø150	ø150		ø150					
Shaft diamete	er	[mm]	ø28	ø28	ø28		ø28				
Mass		[kg]	26	39	39		26				
With leg			Possible	Possible	Possible		Possible				

Motor type		SJ-D7.5/100-01	SJ-D7.5/120-01	SJ-D11/100-01	SJ-D15/80-01	SJ-D18.	.5/80-01	
	1-axis type	MDS-E-SP-	160	160	160	200	240	320
	2-axis type	MDS-E-SP2-	16080(L)	16080(L)	16080(L)	-	-	-
Compatible drive unit	Multi-hybrid type	MDS-EM-SPV3-	10040, 10080, 16040S	10040, 10080, 16040S	16040, 16080, 16040S	20080, 200120	-	320120
Regenerative mDS-EJ-SP-resistor type		120	120	160	-	-	-	
Output %ED rating Short-time rating Continuous rating		kW 8 7.5 6 6.5 4 2 0 1500 6000 10000 r/min	kW 77.5 6 5.5. 4 2 0 1500 6000 12000 r/min	kW 15 11 11 1000 7.5 5 0 1500 4500 10000 r/min	18.5 20 15 15 10 11 15 15 15 15 15 15 15 15 15	xW 30 18.5 10 1500 6000 8000 r/min	kW 30 25 25 20 18.5 10 15.0 4500 6000 80 fr wED rating (25%ED)	
			Short-time (30min)	Short-time (30min)	Short-time (30min)	Short-time (30min)	Short-time (30min)	Short-time (30min)
Standard outpu	t during acceleration/de	eceleration [kW]	7.5	7.5	11	18.5	18.5	25.0
Actual accelera	ation/deceleration outpo	ut (Note 2) [kW]	9	9	13.2	22.2	22.2	30.0
Continuous base rotation speed [r/min]		1500	1500	1500	1500	15	00	
Max. rotation speed in constant output range [r/min]		6000	6000	4500	6000	60	00	
Maximum rotation speed [r/min]		10000	12000	10000	8000	80	00	
Continuous rated torque [N·m]		35.0	35.0	47.7	70.0	95	5.5	
Motor inertia	Motor inertia [kg⋅m²]		0.023	0.023	0.031	0.086	0.	10
Degree of protect	tion (The shaft-through po	rtion is excluded.)	IP54	IP54	IP54	IP54	IP54	
Outline dimension [mm]		204 SQ. 439	204 SQ. 439	204 SQ. 489	260 SQ.	260		
drawing (flang	ge type)					438.5	468.	
Flange fitting		[mm]	ø180	ø180	ø180	ø230	ø2	
Shaft diamete	er	[mm]	ø32	ø32	ø48	ø48		18
Mass		[kg]	53	53	64	93	10	03
With leg			Possible	Possible	Possible	under development	under dev	(alanment

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output". (Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

■SJ-D Series (Normal specifications)

	Motor type		SJ-D22	2/80-01	SJ-D26/80-01
	1-axis type	MDS-E-SP-	240	320	320
	2-axis type	MDS-E-SP2-	240	-	
Compatible	Multi-hybrid type	MDS-EM-SPV3-		_	
drive unit	Regenerative resistor type	MDS-EJ-SP-	-	320120	
Output %ED rating Short-time rat Continuous ra			kW 40 30 22 20 11500 6000 80000 r/min Short-time (30min) ■	kW 40 30 20 118.5 0 1500 4500 6000 8000 %ED rating (25%ED) ⊠ Short-time (30min) □	kW 40 30 20 1500 4500 6000 8000 rimin %ED rating (25%ED) S Short-time (30min) □
Standard outpu	t during acceleration/d	leceleration [kW]	22.0	30.0	35.0
	tion/deceleration outp		26.4	36.0	42.0
	ase rotation speed	[r/min]	15	00	1500
Max. rotation s	peed in constant outp	out range [r/min]	60	00	6000
Maximum rota	ation speed	[r/min]	80	00	8000
Continuous ra	ated torque	[N·m]	11	18	140
Motor inertia		[kg·m²]	0.	14	0.16
Degree of protect	ion (The shaft-through po	ortion is excluded.)	IP	54	IP54
Outline dimer	nsion drawing		260	SO.	260 SQ.
(liange type)		[mm]	538.	583.5	
Flange fitting		[mm]		30	ø230
Shaft diamete	er	[mm]		55	ø55
Mass		[kg]	10		147
With leg			under dev	velopment	under development

■SJ-D Series (Hollow shaft specifications)

Motor type			SJ-D5.5/120-02T-S					
	1-axis type	MDS-E-SP-	-	160	200			
Compatible 2-axis type MDS-E-SP2-			-	16080(L)	-			
drive unit	Multi-hybrid type	MDS-EM-SPV3-	10040, 10080	16040, 16080, 16040S	20080, 200120			
drive driit	Regenerative resistor type	MDS-EJ-SP-	-	-	-			
Output Acceleration/Deceleration %ED rating Short-time rating Continuous rating			kW 15 10 7.5 5 3.7 2000 2800 8000 12000 r/min %ED rating (25%ED)⊠	kW 15 10 9.9.2 5.5.5 3.7 5 0 2000 2800 6000 8000 12000 r/min %ED rating (25%ED)⊠	kW 15 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10			
Standard outpu	it during acceleration/	deceleration [kW]	7.5	9.2	10.4			
	ation/deceleration out		9	11.0	12.5			
	ase rotation speed	, , , ,		2800	-			
	speed in constant out			8000				
Maximum rota	ation speed	[r/min]		12000				
Continuous ra	ated torque	[N·m]		12.6				
Motor inertia		[kg·m²]	0.0075					
Degree of protect	tion (The shaft-through p	oortion is excluded.)	IP54					
				174 SQ.				
(flange type)	nsion drawing	[mm]		327				
Flange fitting		[mm]						
Shaft diamete	er	[mm]		ø28				
Mass		[kg]		24				
With leg				Not possible				

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

(Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

■SJ-DG Series (High-output specifications)

	Motor type		SJ-DG3.7/120-03T	SJ-DG5.5/120-04T	SJ-DG7.5/120-05T	SJ-DG11/100-03T	SJ-DG11	/120-03T
	1-axis type	MDS-E-SP-	160	160	160	200	160	200
	2-axis type	MDS-E-SP2-	-	-	-	-	16080(L)	-
Compatible drive unit	Multi-hybrid type	MDS-EM-SPV3-	10040, 10080, 16040S	16040, 16080, 16040S	16040, 16080, 16040S	20080, 200120	16040, 16080, 16040S	20080, 200120
	Regenerative resistor type	MDS-EJ-SP-	-	-	-	-	-	-
Output %ED rating Short-time rat Continuous ra			KW 6 4 3.7 2 2 2.2 0 1500 7000 10000120000 rimin	8 6 4 5.5 2 0 1500 5500 7000 12000 r/min web 2 1500 5500 7000 12000 8 1500 7000 1200 8 15000 7000 12000 8 1500 7000 1200 8 1500 7000 12000 12000 12000 12000	KW 15 10 150 5500 8000 12000 r/min	KW 18 12 15 11 16 17.5 17.5 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	kW 20 15 11 10 5 7.5 0 14001500 6000 12000 mmin	kW 20 15 15 10 15 17.5 0 1500 4500 6000 1200 rm
			Short-time (15min)	Short-time (30min)	Short-time (30min)	Short-time (30min)	Short-time (30min)	Short-time (30min)
	t during acceleration/o		5.5	7.5	11.0	15.0	11.0	15.0
	tion/deceleration out	, ,, ,	6.6	9.0	13.2	18.0	13.2	18.0
Continuous b	ase rotation speed	[r/min]	1500	1500	1500	1500	1500	1500
Max. rotation s	peed in constant out	put range [r/min]	10000	7000	8000	6000	60	00
Maximum rota	ation speed	[r/min]	12000	12000	12000	10000	120	000
Continuous ra	ated torque	[N·m]	14.0	23.6	35.0	47.7	47	7.7
Motor inertia		[kg·m²]	0.0066	0.012	0.022	0.029	0.0)29
Degree of protection (The	e shaft-through portion and rotation	seal portion are excluded.)	IP54	IP54	IP54	IP54	IP	54
Outline dimer	nsion drawing		174 SQ.	174 SQ.	204 SQ.	204 SQ.	204	so.
(flange type)	Side in the side of the side o	[mm]	327	417	439	489	489	
Flange fitting	diameter	[mm]	ø150	ø150	ø180	ø180	ø1	80
Shaft diamete	er	[mm]	ø28	ø28	ø32	ø48	Ø4	48
Mass		[kg]	24	37	50	61	6	1
With leg			Not possible	Not possible	Not possible	Not possible	Not po	peciblo

	Motor type		SJ-DG15/120-02T-K							
	1-axis type	MDS-E-SP-	20	00	24	40				
	2-axis type	MDS-E-SP2-	-	-	-	-				
Compatible drive unit	Multi-hybrid type	MDS-EM-SPV3-	20080,	200120	-	-				
	Regenerative resistor type	MDS-EJ-SP-	-	-	-	-				
Output %ED rating Short-time ra Continuous ra		1	Low-speed coil WW 20 15 15 10 11 10 1350 1350 1350 1350 135	High-speed coil 18.5 15 15 15 15 15 15 15	Low-speed coil NW 30 20 20 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 10 15 15 15 15 15 15 15 15 15 15 15 15 15	High-speed coil KW 30 30 30 30 30 30 30 30 30 30 30 30 30				
Standard output	t during acceleration/	deceleration [kW]	18.5	18.5	25.0	28				
Actual accelera	tion/deceleration out	put (Note 2) [kW]	22.2	22.2	30	33.6				
Continuous b	ase rotation speed	[r/min]	1350	3550	1350	3550				
	peed in constant out		5500	12000	5500	12000				
Maximum rot	ation speed	[r/min]		120	000					
Continuous ra	ated torque	[N·m]	77.8	29.6	77.8	29.6				
Motor inertia		[kg·m²]	0.086							
Degree of protection (Th	e shaft-through portion and rotation	n seal portion are excluded.)		IP54						
Outline dimension drawing (flange type) [mm]										
Flange fitting	diameter	[mm]		ø2	30					
Shaft diameter	er	[mm]		Ø4	18					
Mass		[kg]		9	3					
With leg				Not po	Not possible					

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

(Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

■SJ-DJ Series (Compact & lightweight specifications)

	Motor type		SJ-DJ5.5/100-01	SJ-DJ5.5/120-01	SJ-DJ7.5/100-01
	1-axis type	MDS-E-SP-	80	80	160
Compatible	compatible 2-axis type		80 16080(M)	80 16080(M)	16080(M)
drive unit	Multi-hybrid type	MDS-EM-SPV3-	10040, 10080, 16040S	10040, 10080, 16040S	10040, 10080, 16040S
Regenerative resistor type MD		MDS-EJ-SP-	100	100	120
Output %ED rating Short-time ra Continuous ra			8 5.5 3.7 4 2 3.7 1500 2000 4500 10000 rmin %ED rating (25%ED)	6	7.5 6 1500 2000 4500 100000 rmin Short-time (15min)
Standard output	t during acceleration/d	deceleration [kW]	5.5	5.5	7.5
			6.6	6.6	9
Base rotation	ctual acceleration/deceleration output (Note 2) [kW] lase rotation Short-time [r/min]		1500	1500	1500
speed			2000	2000	2000
Max. rotation speed in constant output range [r/min]			4500 4500		4500
Maximum rot	ation speed	[r/min]	10000	12000	10000
Continuous ra	ated torque	[N·m]	17.7	17.7	26.3
Motor inertia		[kg·m²]	0.0074	0.0074	0.013
Degree of protect	tion (The shaft-through po	ortion is excluded.)	IP54	IP54	IP54
Outline dimer	nsion drawing		174 SQ.	174 SQ.	174 SQ.
(flange type) [mm]		[mm]	327	327	417
Flange fitting		[mm]	ø150	ø150	ø150
Shaft diameter	er	[mm]	ø28	ø28	ø28
Mass		[kg]	26	26	39
With leg			Possible	Possible	Possible

1-axis type MDS-E-SP- 160		Motor type		SJ-DJ7.5/120-01	SJ-DJ11/100-01	SJ-DJ15/80-01
Multi-hybrid type MDS-EM-SPV3 10040, 10080, 16040S 16040, 16080, 16040S 20080, 200120		1-axis type MI	DS-E-SP-	160	160	200
Multi-hyport type MDS-EJ-SP- 120 160 1	Campatible	2-axis type MI	DS-E-SP2-	16080(L)	16080(L)	-
Regenerative resistor type MDS-EJ-SP- 120				10040, 10080, 16040S	16040, 16080, 16040S	20080, 200120
Output %ED rating Short-time rating Continuous rating Short-time (15min) Short-time	Regenerative		DS-EJ-SP-	120	160	-
Actual acceleration/deceleration output (Note 2) [kW] 9 13.2 18 Base rotation Short-time [r/min] 1500 1500 1500 speed Continuous [r/min] 2000 2000 2000 Max. rotation speed in constant output range [r/min] 4500 4500 4000 Maximum rotation speed [r/min] 12000 10000 8000 Continuous rated torque [N·m] 26.3 35.8 52.5 Motor inertia [kg·m²] 0.013 0.023 0.031 Degree of protection (The shaft-through portion is excluded.) IP54 IP54 Outline dimension drawing Imml 417. 430. 489	%ED rating Short-time rat	ing 🔲		5.5 4 2 1500 2000 4500 12000 r.min	16 12 8 7.5 1500 2000 4500 10000 rmin	16 12 8 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Actual acceleration/deceleration output (Note 2) [kW] 9 13.2 18	Standard output	t during acceleration/decel	leration [kW]	7.5	11	15
Speed Continuous [r/min] 2000 2000 2000				9	13.2	18
Max. rotation speed in constant output range [r/min] 4500 4500 4000 Maximum rotation speed [r/min] 12000 10000 8000 Continuous rated torque [N·m] 26.3 35.8 52.5 Motor inertia [kg·m²] 0.013 0.023 0.031 Degree of protection (The shaft-through portion is excluded.) IP54 IP54 IP54 174 SQ. 204 SQ. 204 SQ. 204 SQ. Outline dimension drawing 417 489	Base rotation	Short-time	[r/min]	1500	1500	1500
Maximum rotation speed [r/min] 12000 10000 8000 Continuous rated torque [N·m] 26.3 35.8 52.5 Motor inertia [kg·m²] 0.013 0.023 0.031 Degree of protection (The shaft-through portion is excluded.) IP54 IP54 IP54 174 SQ. 204 SQ. 204 SQ. 204 SQ. Outline dimension drawing 417 420 489	speed	Continuous	[r/min]	2000	2000	2000
Continuous rated torque [N⋅m] 26.3 35.8 52.5 Motor inertia [kg⋅m²] 0.013 0.023 0.031 Degree of protection (The shaft-through portion is excluded.) IP54 IP54 IP54 174 SQ. 204 SQ. 204 SQ. 204 SQ. 204 SQ. Outline dimension drawing 417 489	Max. rotation s	peed in constant output ra	ange [r/min]	4500	4500	4000
Motor inertia [kg·m²] 0.013 0.023 0.031 Degree of protection (The shaft-through portion is excluded.) IP54 IP54 IP54 174 SQ. 204 SQ. 204 SQ. 204 SQ. Outline dimension drawing 417 420 489		·	<u> </u>	12000	10000	8000
Degree of protection (The shaft-through portion is excluded.) IP54 IP54 IP54 IP54 IP54 Outline dimension drawing IP54	Continuous ra	ated torque	[N·m]	26.3	35.8	52.5
Degree of protection (The shaft-through portion is excluded.) IP54 IP54 IP54 IP54 IP54 Outline dimension drawing IP54	Motor inertia	· · · · · · · · · · · · · · · · · · ·	[kg·m²]	0.013	0.023	0.031
Outline dimension drawing [mm]	Degree of protect	ion (The shaft-through portion		IP54	IP54	IP54
	Outling dimon	union drowing		174 SQ.	204 SQ.	204 SQ.
	(flange type) [mm]		417	439	489	
Flange fitting diameter [mm] ø150 ø180	Flange fitting	diameter	[mm]	ø150	ø180	ø180
Shaft diameter [mm] ø28 ø32 ø48	Shaft diamete	er	[mm]			ø48
Mass [kg] 39 53 64	Mass		[kg]	39		64
With leg Possible Possible Possible	With leg			Possible	Possible	Possible

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

(Note 3) %ED is a load time ratio of operating time relative to a 10-minute cycle time. At 25%ED, for example, the operating time is 2.5 minutes and nonoperation time is 7.5 minutes of a 10-minute cycle time.

(Note 4) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

■SJ-DL Series (Low-inertia specifications)

	Motor type		SJ-DL0.75/100-01	SJ-DL1.5/100-01	SJ-DL3.7/240-01T
	1-axis type	MDS-E-SP-	20	40	200
0	2-axis type	MDS-E-SP2-	20	40	-
Compatible drive unit	Multi-hybrid type	MDS-EM-SPV3-	-	-	20080, 200120
unve unit	Regenerative resistor type	MDS-EJ-SP-	-	-	-
Output Acceleration/ Short-time rai Continuous ra	ting 🖾		1.5 0.4 1.0 0.9 0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	kW 2.0 1.5 1.5 1.0 0.5 0 1500 10000 rmin Short-time (10min)⊠	kW 20 15 10 3.7 1.5 0 3000 8000 20000 24000 r/min Short-time (10min)
Standard outpu	t during acceleration/	deceleration [kW]	0.9	1.5	15.0
	tion/deceleration out		1.1	1.8	18.0
	ase rotation speed	[r/min]	1500	1500	3000
Max. rotation s	peed in constant out	put range [r/min]	10000	10000	24000
Maximum rot	ation speed	[r/min]	10000	10000	24000
Continuous ra		[N·m]	2.55	4.8	4.8
Motor inertia		[kg·m²]	0.0011	0.0019	0.0024
Degree of protect	ion (The shaft-through p	ortion is excluded.)	IP54	IP54	IP54
Outline dimer (flange type)	nsion drawing	[mm]	130 SQ. 264	130 SQ.	130 SQ.
Flange fitting	diameter	[mm]	ø110	ø110	ø110
Shaft diameter		[mm]	ø22	ø22	ø22
Mass		[kg]	10	14	17
With leg		. 33	Not possible	Not possible	Not possible

	Motor type		SJ-DL5.5/150-01T	SJ-DL5.5/200-01T	SJ-DL5.5/240-05T	SJ-DL7.5/150-01T
	1-axis type	MDS-E-SP-	160	160	200	160
	2-axis type	MDS-E-SP2-	16080(L)	16080(L)	-	16080(L)
Compatible drive unit	Multi-hybrid type	MDS-EM-SPV3-	16040, 16080, 16040S	-	20080, 200120	16040, 16080, 16040S
anve and	Regenerative resistor type	MDS-EJ-SP-	-	-	-	-
Output Acceleration/I Short-time rat Continuous ra	ing 🔛 [-	kW 15 11 15000 15000 rmin Short-time (15min) (30min)	kW 15 11 15000 20000 2500 3000 4200 rmin Short-time (15min) (30min)	kW 30 20 10 2550 6550 2000 24000 1650 3000 14000 r/min Short-time(1min) (30min) (30min)	kW 15 10 7.5 5.5 0 15001800 8000 15000 r/mir Short-time(30min)
Standard output	t during acceleration/o	deceleration [kW]	11	11 Snort-time (15min)	22.0	11
	tion/deceleration out		13.2	13.2	26.4	13.2
	ase rotation speed	[r/min]	2500	2500	2500	1500
	peed in constant out	F . 1	15000	20000	20000	8000
Maximum rota		[r/min]	15000	20000	24000	15000
Continuous ra		[N·m]	14.1	14.1	14.1	35.0
Motor inertia		[kg·m²]	0.0046	0.0046	0.0042	0.016
Degree of protect	ion (The shaft-through p	ortion is excluded.)	IP54	IP54	IP54	IP54
			174 SQ.	174 SQ.	174 SQ.	204 SQ.
Outline dimer (flange type)	ision drawing	[mm]	377	377	377	489
Flange fitting		[mm]	ø150	ø150	ø150	ø180
Shaft diamete	er	[mm]	ø28	ø28	ø22	ø32
Mass		[kg]	30	30	27	56
With leg			Not possible	Not possible	Not possible	Not possible

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output". (Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

SPINDLE MOTOR/BUILT-IN SPINDLE MOTOR/TOOL SPINDLE MOTOR 200V

■SJ-DL Series (Hollow shaft specifications)

	Motor type		SJ-DL5.5/200-01T-S
	1-axis type	MDS-E-SP-	160
Compatible	ompatible 2-axis type		16080(L)
drive unit		MDS-EM-SPV3-	-
	Regenerative resistor type	MDS-EJ-SP-	-
Output Acceleration/I Short-time rat Continuous ra	ing 🔲 [3	kW 15 10 11 10 5 5.5 3.7 0 15000 20000 2500 3000 4200
Standard output	t during acceleration/d	leceleration [kW]	11
Actual acceleration/deceleration output (Note 2) [kW]			13.2
Continuous base rotation speed [r/min]			2500
Max. rotation s	peed in constant outp	out range [r/min]	20000
Maximum rota	ation speed	[r/min]	20000
Continuous ra	ated torque	[N·m]	14.1
Motor inertia		[kg·m²]	0.0046
Degree of protect	ion (The shaft-through po	ortion is excluded.)	IP54
Outline dimen (flange type)	ision drawing	[mm]	174 SQ.
Flange fitting	diameter	[mm]	ø150
Shaft diamete	er	[mm]	ø22
Mass		[kg]	28
With leg			Not possible

■SJ-DN Series (High-torque specifications)

	Motor type		SJ-DN7.5/80-01	SJ-DN11/80-01	SJ-DN15/80-01	SJ-DN18.5/80-01
	1-axis type	MDS-E-SP-	160	200	200	200
	2-axis type	MDS-E-SP2-	16080(L)	-	-	-
Compatible Multi-hybrid type		MDS-EM-SPV3-	10040, 10080, 16040S	20080, 200120	20080, 200120	20080, 200120
drive unit	Regenerative resistor type	MDS-EJ-SP-	-	-	-	-
Output %ED rating Short-time rat Continuous ra			8.0 6.0 4.0 2.0 0 7.5 2.0 0 7.5 2.0 0 7.5 2.0 0 7.5 2.0 0 7.5 0 1000 r/min %ED rating(25%ED) S Short-time (15min) (30min)	kW 15 10 9 5 0 650- 1000 8000 r/min %ED rating(25%ED) Short-time (30min)	kW 20 15 10 11 5 0 750 900 5000 8000 r/min %ED rating(25%ED) Short-time (30min)	kW 20 18.5 15 10 5 0 8000 r/min %ED rating(10%ED)⊠ Short-time (30min) □
Standard outpu	t during acceleration/o	deceleration [kW]	7.5	11	15	18.5
	ation/deceleration outp		9	13.2	18	22.2
	ase rotation speed		1000	1000	900	1000
	peed in constant out		2500	5000	5000	3500
Maximum rota	Maximum rotation speed [r/min]		8000	8000	8000	8000
Continuous ra	ated torque	[N·m]	52.5	85.9	117	143
Motor inertia		[kg·m²]	0.031	0.10	0.14	0.16
Degree of protect	tion (The shaft-through p	ortion is excluded.)	IP54	IP54	IP54	IP54
Outline dimer (flange type)	nsion drawing	[mm]	204 SQ. 599	250 SQ. 578.5	250 SQ. 648.5	250 SQ. 693.5
Flange fitting Shaft diamete		[mm]	ø180 ø48	ø230 ø48	ø230 ø55	Ø230 Ø55
Mass		[kg]	86	103	131	147
With leg		. 0,	Possible	Possible	Possible	Possible

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 3) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

(Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

■SJ-V Series (Normal specifications)

	Motor type		SJ-V2.2-01T	SJ-V3.7-02ZT	
1-axis type MDS-E-SP-		MDS-E-SP-	40	80	
Compatible	Compatible drive unit 2-axis type MDS-E-SP2-		40	80	
drive unit			40	16080(M)	
	Multi-hybrid type	MDS-EM-SPV3-	-	-	
Output Short-time rating Continuous rating			kW 6 4 2.2 1.50 1500 6000 10000 rmin Short-time (15min)	kW 6 4 2.2 0 3000 15000 rmin Short-time (15min) □	
Standard output	t during acceleration/o	deceleration [kW]	2.2	3.7	
	tion/deceleration outp		2.6	4.4	
Continuous ba	ase rotation speed	[r/min]	1500	3000	
Max. rotation sp	peed in constant out	put range [r/min]	6000	12000	
Maximum rota	ation speed	[r/min]	10000	15000	
Continuous ra	ited torque	[N·m]	9.5	7.0	
Motor inertia		[kg·m²]	0.00675	0.00675	
Degree of pro	tection		IP44	IP44	
Outline dimen (flange type)	ision drawing	[mm]	174 SQ.	174 SQ.	
Flange fitting diameter [mm]			ø150	ø150	
Shaft diamete Mass	N .	[mm]	ø28 25	ø28 25	
With leq		[kg]	Possible	Possible	
willing			L ASSINIC	L ASSINIC	

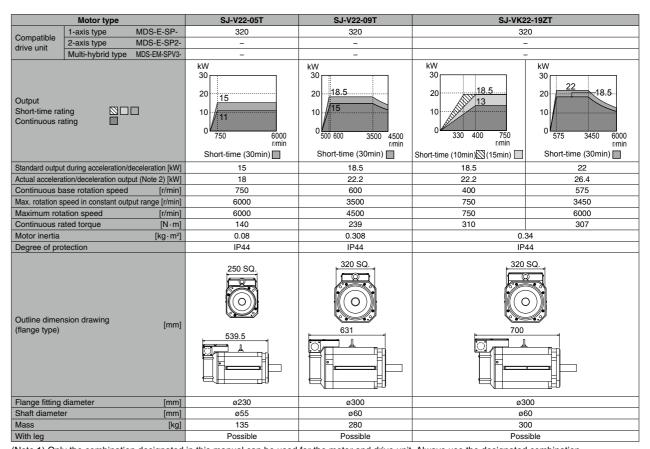
	Motor type		SJ-V15-09ZT	SJ-V18.5-01ZT	SJ-V18.5-04ZT	SJ-V22-01ZT
0	1-axis type	MDS-E-SP-	200	200	240	240
Compatible drive unit	2-axis type	MDS-E-SP2-	-	_	-	_
unve unit	Multi-hybrid type	MDS-EM-SPV3-	20080, 200120	20080, 200120	-	-
Output Short-time ra Continuous ra			kW 20 15 15 10 50 6000 8000 rmin Short-time (30min)	kW 20 15 18.5 10 1500 4500 8000 rmin Short-time (30min)	kW 20 15 18.5 10 1500 6000 8000 rmin Short-time (30min)	kW 30 22 20 10 1500 4500 800 rmii Short-time (30min)
Standard outpu	it during acceleration/d	eceleration [kW]	15	18.5	18.5	22
	ation/deceleration outp		18	22.2	22.2	26.4
	ase rotation speed	[r/min]	1500	1500	1500	1500
	speed in constant outp		6000	4500	6000	4500
Maximum rot		[r/min]	8000	8000	8000	8000
Continuous ra		[N·m]	70	95.5	95.5	118
Motor inertia		[kg·m²]	0.0575	0.0575	0.0575	0.08
Degree of pro	otection		IP44	IP44	IP44	IP44
Outline dimer (flange type)	nsion drawing	[mm]	250 SQ. 469.5	250 SQ. 469.5	250 SQ. 469.5	250 SQ. 539.5
Flange fitting Shaft diamete		[mm]	ø230 ø48	ø230 ø48	ø230 ø48	ø230 ø55
Mass		[kg]	110	110	110	135
With leg			Possible	Possible	Possible	Possible

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

(Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

■SJ-V Series (Normal specifications)


Motor type		SJ-V22-04ZT	SJ-V22-06ZT	SJ-V26-01ZT	SJ-V37-01ZT	
0 171	1-axis type	MDS-E-SP-	320	240	320	400
Compatible drive unit	2-axis type	MDS-E-SP2-	-	-	-	-
arive unit	Multi-hybrid type	MDS-EM-SPV3-	-	-	-	-
Output Short-time rat Continuous ra			8W 30 22 20 18.5 10 1500 6000 8000 rmin Short-time (30min)	kW 20 15 15 10 15 10 1500 9500 10000 rmin Short-time (30min)	kW 30 20 10 0 1500 6000 8000 rmin Short-time (30min)	kW 60 40 37 30 0 1150 3450 6000 rmin Short-time (30min)
Standard outpu	t during acceleration/c	deceleration [kW]	22	15	26	37
Actual accelera	ation/deceleration outp	out (Note 2) [kW]	26.4	18	31.2	44.4
Continuous ba	ase rotation speed	[r/min]	1500	1500	1500	1150
Max. rotation s	peed in constant out	put range [r/min]	6000	9500	6000	3450
Maximum rota	ation speed	[r/min]	8000	10000	8000	6000
Continuous ra	ated torque	[N·m]	118	70.0	140	249
Motor inertia		[kg·m²]	0.08	0.0575	0.0925	0.34
Degree of pro	otection		IP44	IP44	IP44	IP44
Outline dimer (flange type)	nsion drawing	[mm]	250 SQ. 539.5	250 SQ. 469.5	250 SQ. 585.5	320 SQ. 700
Flange fitting Shaft diamete		[mm]	ø230 ø55	ø230 ø48	ø230 ø55	ø300 ø60
Mass		[kg]	135	110	155	300
With lea		r91	Possible	Possible	Possible	Possible

Motor type			SJ-V45-01ZT	SJ-V55-01ZT	
0	1-axis type	MDS-E-SP-	640	640	
Compatible drive unit	2-axis type	MDS-E-SP2-	-	_	
Multi-hybrid type MDS-EM-SPV3-		-	_		
Output Short-time rat Continuous ra			kW 60 45 45 40 6000 rmin Short-time (30min)	kW 60 45 45 4500 rmin Short-time (30min)	
Standard output	t during acceleration/d	acalaration [kW]	45	55	
	tion/deceleration outp		54	66	
	ase rotation speed	[r/min]	1500	1150	
	peed in constant outp		4500	3450	
Maximum rota		[r/min]	6000	4500	
Continuous ra		[N·m]	236	374	
Motor inertia		[kg·m²]	0.34	0.8475	
Degree of pro	tection		IP44	IP44	
Outline dimer (flange type)	ision drawing	[mm]	320 SQ.	480 SQ.	
Flange fitting	diameter	[mm]	ø300	ø450	
Shaft diamete	er	[mm]	ø60	ø75	
Mass		[kg]	300	450	
With leg			Possible Possible		

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output". (Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

■SJ-V Series (Wide range constant output specifications)

Motor type			SJ-V11-01T	SJ-V11-09T	SJ-V15-03T	SJ-V18.5-03T
0	1-axis type	MDS-E-SP-	160	160	200	240
Compatible drive unit	2-axis type	MDS-E-SP2-	16080(L)	16080(L)	-	-
drive unit	Multi-hybrid type	MDS-EM-SPV3-	16040, 16080, 16040S	16040, 16080, 16040S	20080, 200120	-
Output Short-time ra Continuous ra			kW 15 10 5.5 5.5 0 750 6000 rmin	kW 15 10 7.5 5 5 5 5 6000 rmin	kW 15 10 9	kW 15 11 9 9 0 750 6000 rmin
Ote a dead easter	4 d	In a standard BAAR	Short-time (30min)	Short-time (30min)	Short-time (30min)	Short-time (30min)
	t during acceleration/o		5.5 6.6	7.5	9	11
	ation/deceleration outp	, ,, ,		9	10.8	13.2
	ase rotation speed	[r/min]	750	750	750	750
	peed in constant out		6000	6000	6000	6000
Maximum rot		[r/min]	6000	6000	6000	6000
Continuous ra	ated torque	[N·m]	47.1	70.0	95.5	115
Motor inertia		[kg·m²]	0.03	0.0575	0.0575	0.08
Degree of pro	otection		IP44	IP44	IP44	IP44
	nsion drawing	[mm]	204 SQ.	250 SQ.	250 SQ.	250 SQ.
(flange type)			490	469.5	469.5	539.5
Flange fitting		[mm]	ø180	ø230	ø230	ø230
Shaft diamete	er	[mm]	ø48	ø48	ø48	ø55
Mass		[kg]	70	110	110	135
With leg			Possible	Possible	Possible	Possible

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output". (Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

■SJ-VL Series (Low-inertia specifications)

Motor type			SJ-VL2.2-02ZT	SJ-VL11-02FZT	SJ-VL11-05FZT-S01 *1
Compatible	1-axis type	MDS-E-SP-	40	160	160
drive unit	2-axis type	MDS-E-SP2-	40	16080(L)	16080(L)
unve unit	Multi-hybrid type	MDS-EM-SPV3-	-	16040, 16080, 16040S	16040, 16080, 16040S
Output Acceleration/ Short-time ra Continuous ra	ting 🔯 [2.2 2 1.5 1 0 3000 15000 rmin	15 10 11 10 11 10 2 2 4000 10000 15000 1500 r/min	10 10 11 10 5000 18000 6000 20000 rmin
			Short-time (15min)	Short-time (15min)	Short-time (10min)
Standard output	t during acceleration/	deceleration [kW]	2.2	11	11
Actual accelera	tion/deceleration out	put (Note 2) [kW]	2.6	13.2	13.2
	ase rotation speed		3000	1500	5000
Max. rotation s	peed in constant out	put range [r/min]	15000	15000	20000
Maximum rot	ation speed	[r/min]	15000	15000	20000
Continuous ra	ated torque	[N·m]	4.8	14.0	2.86
Motor inertia		[kg·m²]	0.0024	0.003	0.0024
Degree of pro	tection		IP44	IP44	IP44
Outline dimer	nsion drawing	[mm]	130 SQ.	174 SQ.	130 SQ.
(flange type)			325	441	325
Flange fitting		[mm]	ø110	ø150	ø110
Shaft diameter	er	[mm]	ø22	ø28	ø22
Mass		[kg]	20	42	20
With leg			Not possible	Not possible	Not possible

^{*1} The acceleration/deceleration frequency is limited by the regenerative resistor.

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output". (Note 3) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

BUILT-IN SPINDLE MOTOR 200V

■SJ-BG Series (Normal specifications)

Motor type (Note 1)		SJ-BG090A/300-01 (R)	SJ-BG090B/300-03	SJ-BG090D/300-03	SJ-BG110F/240-01
	MDS-E-SP-	20	40	160	80
Compatible drive unit MDS-E-SP2-		20	40	16080(L)	80 16080(M)
Output Acceleration/Deceleration %ED rating Continuous rating		2.0 1.5 1.5 1.0 0.75	2.0 1.5 1.5 1.0 1.5 1.0 1.2 1.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	kW 10 8 6 17.5 4 15.5 2 0 12000 14500 30000 r/min %ED rating(10%ED) □ (25%ED) □ (40%ED) □	\$\text{KW} 6
Standard output during accel	eration/deceleration [kW]	1.5	1.5	1.5 9.0	
Actual acceleration/decelera	tion output (Note 3) [kW]	1.8	1.8		6.6
Continuous base rotati	on speed [r/min]	8400	6000	6000 12000	
Maximum rotation s	peed [r/min]	30000	30000 30000		24000
Continuous rated to	rque [N·m]	0.85	1.91	4.38	9.5
Rotor inertia	[kg·m²]	0.00021	0.0004	0.0008	0.0026
Outline dimension drawing	[mm]	33(35) 8.33(35) 8.9.5	100 ESS 89.93	153 85 86 86 86	240 5:001.0
Mass	or [kg]	0.7	1.2	2.6	7.4
Roto	r [kg]	0.4	0.7	1.4	3.2

Motor type (Note 1)		SJ-BG120A/200-01 ☐(R)		SJ-BG120C/200-01 (R)	SJ-BG135	D/200-01
MDS-E-SP-		8	0	80	32	20
Compatible drive unit	MDS-E-SP2-	8 1608		80 16080(M)	-	
Output Acceleration/Deceleration %ED rating Continuous rating		kW Low-speed coil 4 3.7 2 1.5 0 12000 15000 7200 r/min	kW High-speed coil 6 4 5.5 3.7 2 1.5 5500 16000 20000 8100 r/min	kW 6 4 3.7 2 2 2 2 2 2 0 1900 12000 20000 r/min	kW Low-speed coil 20 15 10 2200	kW High-speed coil 30 20 18.5 10 5400 5700 6000 20000 7/min
		%ED rating(10%ED) (15%ED) (40%ED) (40%ED)		%ED rating(15%ED) (40%ED)	%ED rating(10%ED) ∑ (15%ED) (25%ED) ∑	%ED rating(15%ED) (25%ED)
Standard output during accelerati	ion/deceleration [kW]	3.7	5.5	3.7	15	26
Actual acceleration/deceleration	output (Note 3) [kW]	4.4 6.6		4.4	18.0	31.2
Continuous base rotation	speed [r/min]	2500	5500	2500	3280	6000
Maximum rotation spe	ed [r/min]	15000	20000	20000	8000	20000
Continuous rated torqu	ue [N·m]	5.7	2.6	8.4	32.0	29.4
Rotor inertia	[kg·m²]	0.0016 (0.0014)		0.0032 (0.0027)	0.0044	
Outline dimension drawing [mm]		-1 135	97-16-22 9-119.5	Ø41(3.5)	219 234.5	
Stator	[kg]	3.	0	5.9	1	2
Mass Rotor	[kg]	1.	3	2.5	3.	.3

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.

(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 3) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

(Note 4) A value in brackets is for the motor type which has (R) in the end of the type name.

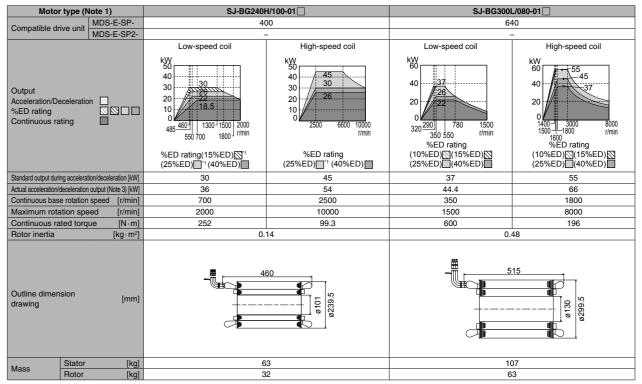
■SJ-BG Series (Normal specifications)

Motor type (N	ote 1)	SJ-BG150D/150-01		SJ-BG160B/150-01 ☐(R)		SJ-BG160D/150-01 (R)
	MDS-E-SP-	80	40	80	160	80
Compatible drive unit	MDS-E-SP2-	80 16080(M)	40	80 16080(M)	16080(L)	80 16080(M)
Output Acceleration/Deceleration %ED rating Continuous rating		6 4 5.5 2 0 2500 7500 15000 r/min %ED rating(40%ED)	8W 6 4 2 2 2 2 2 2 2 2 2 2 0 3500 10000 15000 r/min %ED rating(40%ED) □	8W 6 4 3.7 2 0 1300 15000 15000 r/min %ED rating(40%ED)	kW 9 17.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 4 2 0 1500 4500 15000 r/min %ED rating(40%ED)
Standard output during acceleration	on/deceleration [kW]	5.5	3.7	3.7	7.5	5.5
Actual acceleration/deceleration	output (Note 3) [kW]	6.6	4.44 4.44		9	6.6
Continuous base rotation	speed [r/min]	2500	3500 1300		1770	1500
Maximum rotation spe-	ed [r/min]	15000	15000	15000	15000	15000
Continuous rated torqu	ue [N·m]	14.1	6.0	16.2	20.0	23.6
Rotor inertia	[kg·m²]	0.0057	0.0048(0.0042)	0.0048(0.0042)	0.0048(0.0042)	0.0070(0.0061)
Outline dimension drawing	[mm]	170		(a70)(Note 4)		(970) (970)
Mass	[kg]	8.1	7.1	7.1	7.1	11
Rotor	[kg]	3.7	2.9(2.3)	2.9(2.3)	2.9(2.3)	4.2(3.3)

Motor type (Note 1)		SJ-BG160D/150-02 (R)	SJ-BG180B/150-01		SJ-BG1800	0/150-01
Compatible drive unit MDS-E-SP-MDS-E-SP2-		160	40	00	40	00
		16080(L)	-		-	
Output Acceleration/Decel %ED rating Continuous rating		kW 10 8	Low-speed coil kW 36 27 18.5 18 9 15.5 10 100 200 200 200 200 200 10%ED rating (10%ED) 1 (15%ED) 1 (15%ED) 1 (25%ED) 1 (40%ED)	High-speed coil KW 36 27 30 227 18 9 0 6000 11000 15000 12700 r/min %ED rating(15%ED) (25%ED) (40%ED)	Low-speed coil kW 36 27 18 9 1050 1050 1000 1200 1000 1200 1000 1200 12	High-speed coil kW 36 27 18 9 0 6500 15000 r/min %ED rating (25%ED) (40%ED)
Standard output during a	cceleration/deceleration [kW]	9.0	18.5	30	22	30
Actual acceleration/dece	leration output (Note 3) [kW]	10.8	22.2	36	26.4	36
Continuous base ro	tation speed [r/min]	1500	2300	6000	2000	6500
Maximum rotatio	n speed [r/min]	15000	6000	15000	6000	15000
Continuous rated	I torque [N·m]	23.6	45.7	29.4	71.6	32.3
Rotor inertia	[kg·m²]	0.0070(0.0061)	0.012		0.0	118
Outline dimension [mm]		(a70)(Note 4)	21:	878 878 5	27	0179.5
Mass	tator [kg]	11		4	2	
R	otor [kg]	4.2(3.3)	5	.1	8.	.0

^{*1} The cycle times for 10%ED rating, 15%ED rating, and 25%ED rating (Low-speed coil) are 5 minutes.

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.


(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 3) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

(Note 4) A value in brackets is for the motor type which has (R) in the end of the type name.

■SJ-BG Series (Normal specifications)

Motor type (Note 1)	SJ-BG180I	F/150-01	SJ-BG180F	H/150-01 🗌
Compatible drive unit MDS-E-SP-	40	00	40	00
MDS-E-SP2-	-	-	-	-
Output Acceleration/Deceleration %ED rating Continuous rating	Low-speed coil kW 40 30 22 20 16.5 10 0 15.0 15.0 15.0 15.0 15.0 15.0 15	High-speed coil kW 40 30 30 20 5700 11500 15000 13800 f/min %ED rating(15%ED) (25%ED) (40%ED)	Low-speed coil kW 40 30 18.5 20 15. 15. 10 800-4670 2810 6000 950 670 2810 6700 r/min 2000 r/min (10%ED) (15%ED) (25%ED) (40%ED)	High-speed coil kW 40 37 30 20 10 4700-7500 9000 r/min 111100 %ED rating (25%ED) (40%ED)
Standard output during acceleration/deceleration [kW]	22 37		26	37
Actual acceleration/deceleration output (Note 3) [kW]	26.4	44.4	31.2	44.4
Continuous base rotation speed [r/min]	1650	5700	1200	4700
Maximum rotation speed [r/min]	4000	15000	6000	15000
Continuous rated torque [N·m]	86.8 36.9		119 52.8	
Rotor inertia [kg·m²]	0.0	23	0.0	29
Outline dimension [mm] drawing	322	ø776 ø776	37	0179.5
Mass Stator [kg]	2		3	
Rotor [kg]	1	0	1	2

^{*1} The cycle times for 10%ED rating, 15%ED rating, 25%ED rating (Low-speed coil), and 25%ED rating (High-speed coil) are 5 minutes.

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.

(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 3) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

SPINDLE MOTOR/BUILT-IN SPINDLE MOTOR/TOOL SPINDLE MOTOR 200V

■SJ-BG Series (High-speed specifications)

Motor type (Note 1)	SJ-BG160I	0/200-03	SJ-BG180F	F/200-01	
Compatible drive unit MDS-E-SP-	24	10	40	00	
MDS-E-SP2-	-	-	-	-	
Output Acceleration SED rating SED rating Continuous rating	Low-speed coil kW 20 15 15 10 2300] 2700 5500 r/min %ED rating (10%ED) (40%ED) (40%ED)	High-speed coil kW 36 27 18.5 22 18.5 22 18.5 7000 11800 20000 7500 4000 r/min 8000 8500 %ED rating (10%ED) (15%ED) (25%ED) (40%ED)	Low-speed coil kW 30 18.55, 22 20 10 400 9840 150 9840 150 9840 150 150 86ED rating (10%ED) [3** (15%ED) [3** (15%ED) [3**]	High-speed coil kW 40 30 37 26 20 10 0 5700 13800 2000 11500 17000 r/min **ED rating (15%ED)** (40%ED)** (40%ED)**	
Standard output during acceleration/deceleration [kW]	15	15 22		37	
Actual acceleration/deceleration output (Note 3) [kW]	18.0	26.4	26.4	44.4	
Continuous base rotation speed [r/min]	2700	7500	1650	5700	
Maximum rotation speed [r/min]	5500	20000	4000	20000	
Continuous rated torque [N·m]	26.5	19.1	86.8	36.9	
Rotor inertia [kg·m²]	0.0	062	0.023		
Outline dimension [mm] drawing	19	4159.5	32	ø775 ø776	
Mass Stator [kg]		0	2		
Rotor [kg]	3.	4	1	0	

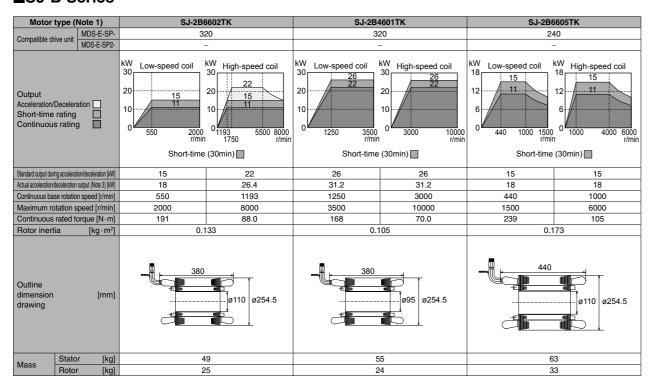
Motor type (Note 1)		SJ-BG240F	H/130-01 🗌		
Compatible drive unit MDS-E-S	SP-	40	00		
MDS-E-S	SP2-	-	-		
Output Acceleration/Deceleration %ED rating Continuous rating Standard output during acceleration/deceleration [kW]		Low-speed coil kW 50 40 26	High-speed coil kW 50 40 30 20 10 2500 7000 13000 10500 r/min %ED rating (25%ED) ** (40%ED)		
Standard output during acceleration/deceleration	n [kW]	30	45		
Actual acceleration/deceleration output (Note 3	3) [kW]	36	54		
Continuous base rotation speed [r.	/min]	700	2500		
Maximum rotation speed [r/	min]	2000	13000		
Continuous rated torque [N	l·m]	252	99.3		
Rotor inertia [kg	· m²]	0.	14		
Outline dimension [mm]		4	000000000000000000000000000000000000000		
Mass Stator	[kg]		63		
Rotor	[kg]	3	32		

^{*1} The cycle times for 10%ED rating, 15%ED rating, 25%ED rating (Low-speed coil), and 25%ED rating (High-speed coil) are 5 minutes.

■SJ-B Series

Motor type (Note 1)	SJ-2B4002T	SJ-2B4004T	SJ-2B4003T
Compatible drive unit MDS-E-SP-		40	40
MDS-E-SP2-	20	40	40
Output AccelerationDeceleration Short-time rating Continuous rating	0.9 0.6 0.3 0 3000 10000 1/min Short-time (15min)	kW 3 2 1.5 1 0 3000 15000 //min Short-time (15min)	2.2 1.5 1 0 3000 12000 r/min Short-time (15min)
Standard output during acceleration/deceleration [kW]	0.75	1.5	2.2
Actual acceleration/deceleration output (Note 3) [kW]	0.9	1.8	2.64
Continuous base rotation speed [r/min]	3000	3000	3000
Maximum rotation speed [r/min]	10000	15000	12000
Continuous rated torque [N·m]	1.27	2.39	4.77
Rotor inertia [kg·m²]	0.00078	0.00078	0.00138
Outline dimension [mm] drawing	3-6 01	120 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	24 5 6 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1
Mass Stator [kg]		2.2	3.9
Rotor [kg]	0.9	0.9	1.7

Moto	r type (Not	e 1)	SJ-2B4	501TK	SJ-2B	6611TK	SJ-2B	4502TK
Compatible of	drivo unit ME	OS-E-SP-	20	00	2	00	3:	20
Compandie	ME ME	S-E-SP2-	-					
Short-tim	Deceleration [e rating [us rating [18 15	18 15 15 12	18 12 11 7.5 6 0 460 1500 r/min		20 20 11 10 525 1050 3000 r/min	kW High-speed coil 30 22 20 11 11 17.5 1000 17/m (30min)
Standard output d	during acceleration/de	celeration [kW]	15	15	11	15	22	22
Actual acceleration	n/deceleration output	(Note 3) [kW]	18	18	13.2	18	26.4	26.4
Continuous b	ase rotation sp	eed [r/min]	700	1320	500	1030	525	1050
Maximum	rotation spee	d [r/min]	2250	10000	1500	6000	3000	10000
Continuou	s rated torqu	ue [N·m]	102	54.3	143	69.5	136	68.2
Rotor ine	rtia	[kg·m²]	0.0	08	0.	102	0.1	105
Outline dimension drawing	n	[mm]	320	ø95 ø229.5	320	ø110 ø254.5	380	ø95 ø229.5
Mass	Stator	[kg]	2			37		37
Rotor [kg] 18		19		24				


⁽Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.

(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 3) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

⁽Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.
(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.
(Note 3) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

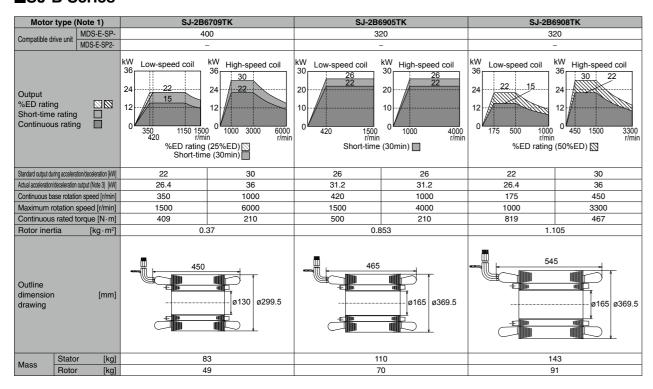
■SJ-B Series

Motor type (Note 1)	SJ-2B4	503TK	SJ-2B6	6603TK	SJ-2B4	1602TK
Compatible drive unit MDS-E-SP-	32	0	32	20	32	20
MDS-E-SP2-	-				-	
Output %ED rating Short-time rating Continuous rating	20 15	W High-speed coil 30 22 22 15 15 10 10 100000 1000000	20 22 15 15 10 600 1000 1500 r/min	W High-speed coil 22 22 15 10 1200 4200 6000 r/min (30min)	30 22 22 18.5 10 600 2000 720 r/min %ED rating	8W High-speed coil 30 220 10 10 1500 7000 10000 r/min (40%ED) ⊠ e (30min)
Standard output during acceleration/deceleration [kW]	15	22	22	22	22	22
Actual acceleration/deceleration output (Note 3) [kW]	18	26.4	26.4	26.4	26.4	26.4
Continuous base rotation speed [r/min]	475	1250	600	1200	720	1500
Maximum rotation speed [r/min]	2000	10000	1500	6000	2000	10000
Continuous rated torque [N·m]	221	115	239	119	245	118
Rotor inertia [kg·m²]	0.1	35	0.1	173	0.1	35
Outline dimension [mm] drawing	445	ø95 ø229.5	445	ø110 ø254.5	440	ø95 ø254.5
Mass Stator [kg]	4			3	7	
Rotor [kg]	3	1	3	33	3	1

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.
(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 3) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

■SJ-B Series


Motor type (Note 1)	SJ-2B6	720TK	SJ-2B6	6705TK	SJ-2B	6711TK
Compatible drive unit MDS-E-SP-	32	20	20	00	3	20
MDS-E-SP2-	-		-	_		_
Output %ED rating Short-time rating Continuous rating	22 20 22 15 10 0 500 700 1500 r/min %ED rating (W High-speed coil 30 26 20 1550 4500 15%ED) \(\text{N}\) (30min) \(\text{N}\)	15 11 11 7.5 5 0 250 750 r/min	High-speed coil 15 10 7.5 0 500 3500 4500 r/min (30min) (30min)		kW High-speed coil 30 22 20 15 10 820 5000 1500 r/min (25%ED) Se e (30min)
Standard output during acceleration/deceleration [kW]	22	26	11	11	22	22
Actual acceleration/deceleration output (Note 3) [kW]	26.4	31.2	13.2	13.2	26.4	26.4
Continuous base rotation speed [r/min]	700	1550	250	500	400	820
Maximum rotation speed [r/min]	1500	4500	750	4500	1700	5000
Continuous rated torque [N·m]	205	136	286	133	263	114
Rotor inertia [kg·m²]	0.2	20	0.2	288	0.5	280
Outline dimension [mm] drawing	300	ø130 ø299.5	400	ø130 ø299.5	405	ø130 ø299.5
Mass Stator [kg]	4		_	5		65
IVIASS	otor [kg] 26		38		37	

Motor type ((Noto 1)	SJ-2B6	706TK	C 1-2B4	5721TK	S 1-2B4	5704TK
wotor type (MDS-E-SP-	33-286			20	33-286	-
Compatible drive unit	MDS-E-SP2-	- 40		- 32			-
Output Acceleration/Deceler %ED rating Short-time rating Continuous ratin	ration 🔲	26 24 18.5	36 24 18.5 12 0 1080 6000 1750 r/min	24 22 18.5 12 0 500 1500		24 22 15 15 1150 420 r/mi	n r/min ED)⊠ (40%ED)⊠
tandard output during accelera	ation/deceleration [kW]	26	30	22	30	22	30
ctual acceleration/deceleration	n output (Note 3) [kW]	31.2	36	26.4	36	26.4	36
Continuous base rotati	on speed [r/min]	450	1080	500	1500	475	1000
Maximum rotation	speed [r/min]	2000	6000	1500	6000	1150	6000
Continuous rated t	torque [N·m]	318	133	353	140	302	175
Rotor inertia	[kg·m²]	0.2	88	0.2	283	0.0	37
Outline dimension drawing	[mm]	405	ø130 ø299.5	390	ø145 ø299.5	470	ø130 ø299.5
Mass Stato	[9]	6			0	_	3
Rotor	r [kg]	3	8	3	5	4	9

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.
(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 3) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

■SJ-B Series

Motor type ((Note 1)	SJ-2B6	906TK	SJ-2B6	914TK
Compatible drive unit	MDS-E-SP-	40	00	64	40
Compatible drive unit	MDS-E-SP2-	-	-	-	-
Output Acceleration/Deceler Short-time rating Continuous ratin		kW Low-speed coil 45 30 22 15 175 680 1000 7/min Short-time	45 37 30 300 150 600 1800 3300 r/min	36 30 30 25 25 2	W High-speed coil 10 45 25 10 470 700 2100 3150 3300 r/min (30min)
Standard output during accelera	ation/deceleration [kW]	22	37	30	45
Actual acceleration/deceleration	output (Note 3) [kW]	26.4	44.4	36	54
Continuous base rotation	on speed [r/min]	175	600	240	470
Maximum rotation	speed [r/min]	1000	3300	1000	3300
Continuous rated t	torque [N·m]	819	477	995	508
Rotor inertia	[kg·m²]	1.1	05	1.1	05
Outline dimension drawing	[mm]	55	5 Ø165 Ø369.5	520	ø165 ø369.5
Mass		14			43
Roto	r [kg]	9	1	9	1

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.
(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 3) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

■SJ-PMB Series

Motor type ((Note 1)	SJ-PMB02215T-02	SJ-PMB0	4412T-B0	SJ-PMB1	14007T-01
0 131 11 3	MDS-E-SP-	240	20	00	3:	20
Compatible drive unit	MDS-E-SP2-	-	-	-		-
Output %ED rating Continuous ratin	⊠□□ g □	kW 9 6 3.5 3.5 0 1500 10000 r/min %ED rating (50%ED) **This is a second of the secon	9 7.5 6 5.5 3 1200 3000 r/min	High-speed coil 9 7.5 6	18 Low-speed coll 12 15 16 17 17 18 18 10 17 18 18 18 18 18 18 18 18 18 18 18 18 18	High-speed coil 18 15 12 6 1800 6000 r/min (15%ED) [S]
Standard output during accelera	afion/deceleration [kW]	5.5	7.5	7.5	15	15
Actual acceleration/deceleration		6.6	9			18
Continuous base rotation		1500	1200	3000	750	1800
Maximum rotation		10000	0 3000 8000		1800	6000
Continuous rated t	torque [N·m]	22.3	43.8	17.5	140	58.4
Rotor inertia	[kg·m²]	0.006	0.0162		0.0633	
Outline dimension drawing	ttine [mm]		225	g70.6 ø179.5	250	ø95 ø254.5
Mass	F 31	4.4		1.0		30
Rotor	r [kg]	3.7	8	.0	1	5

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.

(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 3) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

TOOL SPINDLE MOTOR 200V

■HG-JR Series

			HG-JR	Series
	Motor type		HG-JR73	HG-JR153
	1-axis type	MDS-E-SP-	40	80
Compatible drive unit	2-axis type	MDS-E-SP2-	40	80 16080
arive unit	Regenerative	MDS-EJ-SP-	80	-
	resistor type	MDS-EJ-SP2-	-	-
Output Rated torque Max. torque		[N·m]	7.2	4.8
Rated output		[kW]	0.75	1.5
Max. rotation spee	ed	[r/min]	8000	8000
Motor inertia		[×10 ⁻⁴ kg·m ²]	2.09	3.79
Degree of protection (T	he shaft-through	portion is excluded.)	IP67	IP67
Outline dimension	drawing	[mm]	90SQ.	90SQ.
Cuante uniterision	urawing .	ըսույ	145.5	199.5
Flange fitting diam	eter	[mm]	ø80	ø80
Shaft diameter		[mm]	ø16	ø16
Mass		[kg]	3.7	5.9

■HG Series

				HG Series	
	Motor type			HG□-D47	
			HG46	HG56	HG96
	1-axis type	MDS-E-SP-	20	20	20
Compatible 2-axis type		MDS-E-SP2-	20	20	20 40
arive unit	Regenerative	MDS-EJ-SP-	20	20	20
	resistor type	MDS-EJ-SP2-	20	20	20
Output Rated torque Max. torque		[N·m] ·	2.5	5.0	1.43
Rated output		[kW]	0.4	0.5	0.9
Max. rotation spec	ed	[r/min]	6000	6000	6000
Motor inertia		[×10 ⁻⁴ kg·m ²]	0.234	0.379	1.27
Degree of protection (T	he shaft-through	portion is excluded.)	IP67	IP67	IP67
Outline dimension	drawing	[mm]	60SQ.	60 S.Q.	80SQ.
			117.2	138.9	147.8
Flange fitting dian	neter	[mm]	ø50	ø50	ø70
		[mm]	ø14	ø14	ø19
Shaft diameter					

(Note 1) The above characteristics values are representative values. The maximum current and maximum torque are the values when combined with the drive unit.

(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

■HG Series

					HG S	eries		
	Motor type				HG□]-D48		
			HG75	HG105	HG54	HG104	HG154	HG224
	1-axis type	MDS-E-SP-	20	20	40	40	80	80
Compatible	2-axis type	MDS-E-SP2-	20	20	40	40	80	80
drive unit	Z-axis type	WIDO-L-OI Z-	40	40	80	80	16080	16080
unve unit	Regenerative	MDS-EJ-SP-	20	20	20	40	80	80
	resistor type	MDS-EJ-SP2-	20	20	20	-	-	-
Output Rated torque Max. torque		[N·m]	1.8 8.0	2.4	13.0	23.3	42.0	7.0
Rated output		[kW]	0.75	1.0	0.5	1.0	1.5	2.2
Rated rotation speed [r/min]			40	00		30		
Max. rotation s	speed	[r/min]	4000 3000					
Motor inertia		[×10 ⁻⁴ kg·m ²]	2.62	5.12	6.13	11.9	17.8	23.7
Degree of protection	on (The shaft-through p	portion is excluded.)			IP	67		
Outline dimens	sion drawing	[mm]	90 SQ.	90 SQ.	130 SQ.	130 SQ.	130 SQ.	130 SQ.
(flange type)		[mm]	127.5	163.5	118.5	140.5	162.5	184.5
Flange fitting of	diameter	[mm]	ø80	ø80	ø110	ø110	ø110	ø110
Shaft diameter	r	[mm]	ø14	ø14	ø24	ø24	ø24	ø24
Mass		[kg]	2.6	4.4	4.8	6.5	8.3	10.0

					HG Series				
	Motor type		HG□-D48						
			HG204	HG354	HG453	HG703	HG903		
	1-axis type	MDS-E-SP-	80	160	160	160	320		
Compatible drive unit	2-axis type	MDS-E-SP2-	80 16080	16080	16080	16080	-		
arive unit	Regenerative	MDS-EJ-SP-	80	-	-	-	-		
	resistor type	MDS-EJ-SP2-	-	-	-	-	-		
							208.0		
Output						152.0			
Rated torque		[N·m]		90.0	122.0				
Max. torque			47.0						
			6.4	11.1	14.3	22.3	28.6		
			0.4	11.1					
Rated output		[kW]	2.0	3.5	4.5	7.0	9.0		
Rated rotation speed [r/min]					3000				
Max. rotation s	speed	[r/min]	·		3000				
Motor inertia		[×10 ⁻⁴ kg·m ²]	38.3	75.0	112.0	154.0	196.0		
Degree of protection	on (The shaft-through p	portion is excluded.)			IP67				
Outline dimens	sion drawing	[mm]	176 SQ.	176 SQ.	176 SQ.	176 SQ.	204 SQ.		
(flange type)		[11111]	143.5	183.5	223.5	263.5	330		
Flange fitting of	diameter	[mm]	ø114.3	ø114.3	ø114.3	ø114.3	ø180		
Shaft diameter	r	[mm]	ø35	ø35	ø35	ø35	ø42		
Mass		[kq]	12.0	19.0	25.0	32.0	43.0		

(Note 1) The above characteristics values are representative values. The maximum current and maximum torque are the values when combined with the drive unit.

(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

SERVO MOTOR 400V

■HG-H Series

SERVO MOTOR/LINEAR SERVO MOTOR 400V

	Motor type		HG-H75	HG-H105	HG-H54	HG-H104	HG-H154
	1-axis type	MDS-EH-V1-	10	10	20	20	40
	0	MDO ELLVO	10	10	20	20	40
0	2-axis type	MDS-EH-V2-	20	20	40	40	80
Compatible drive unit	3-axis type	MDS-EH-V3-	-	-	40	40	40
drive unit	Multi-hybrid type	MDS-EMH-SPV3-	_	-	8040, 10040	8040, 10040	8040, 10040, 10060
	Regenerative resistor type	MDS-EJH-V1	15	20	20	20	40
		[N·m]	8.0.	11.0	13.0	23.3	9.0
Rated output		[kW]	0.75	1.0	0.5	1.0	1.5
Max. rotation spe		[r/min]	50		0.0	4000	1.5
Motor inertia	<u> </u>	[×10-4kg·m²]	2.62	5.12	6.13	11.9	17.8
Motor inertia with	n a brake	[×10-4kg·m²]	2.70	5.20	8.26	14.0	20.0
Degree of protection		. 0 1	20	0.20	IP67	10	20.0
Outline dimensic (flange type) (Without a brake D48 encoder) (Note) The total longer when usin D74 encoder.	on drawing Straight shaf	t, [mm]	90 SQ.	90 SQ.	130 SQ.	130 SQ.	130 SQ.
Flange fitting dia Shaft diameter	meter	[mm]	ø80 ø14	ø80 ø14	ø110 ø24	ø110 ø24	ø110 ø24
Mass (with a bra	ke)	[kg]	2.6(3.6)	4.4(5.3)	4.8(6.7)	6.5(8.5)	8.3(11.0)
Absolute position	67,108,864	[p/rev] (D74)	EH	EH	EH	EH	EH
encoder compatible drive unit		[p/rev] (D51) [p/rev] (D48)	EH, EJH	EH, EJH	EH, EMH, EJH	EH, EMH, EJH	EH, EMH, EJH

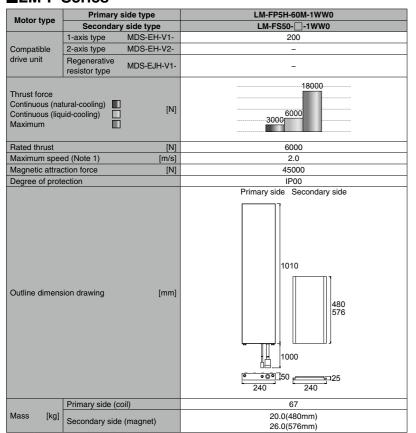
	Motor type		HG-H224	HG-H204	HG-H354	HG-H453	HG-H703
	1-axis type	MDS-EH-V1-	40	40	80	80	80W
	2-axis type	MDS-EH-V2-	40	40	80	80	80W
Campatible	2-axis type	MDS-EH-VZ-	80	80	80W	80W	160
Compatible drive unit	3-axis type	MDS-EH-V3-	40	40	-	-	_
unive unit	Multi-hybrid type	MDS-EMH-SPV3-	-	8040, 10040, 10060	10060	10060	_
	Regenerative resistor type	MDS-EJH-V1	-	-	-	_	-
		[N·m]					152.0
Max. torque					90.0	122.0	
			46.5	47.0		37.2	49.0
		-	12.0	13.7	22.5	37.2	
Rated output		[kW]	2.2	2.0	3.5	4.5	7.0
Max. rotation sp	peed	[r/min]		4000		3500	3000
Motor inertia		[×10 ⁻⁴ kg·m ²]	23.7	38.3	75.0	112.0	154.0
Motor inertia wit	th a brake	[×10 ⁻⁴ kg·m ²]	25.9	47.9	84.7	122.0	164.0
Degree of protection	(The shaft-through	portion is excluded.)			IP67		
Outline dimensi (flange type) (Without a brake D48 encoder)	ŭ	t, [mm]	130 SQ.	176 SQ.	176 SQ.	176 SQ.	176 SQ.
(Note) The total longer when usi D74 encoder.		. ,	184.5	143.5	183.5	223.5	263.5
Flange fitting dia	ameter	[mm]	ø110	ø114.3	ø114.3	ø114.3	ø114.3
Shaft diameter		[mm]	ø24	ø35	ø35	ø35	ø35
Mass (with a bra		[kg]	10.0(12.0)	12.0(18.0)	19.0(25.0)	25.0(31.0)	32.0(38.0)
Absolute position		[p/rev] (D74)		EH	EH	EH]
encoder compatib drive unit		[p/rev] (D51) [p/rev] (D48)	EH	EH, EMH	EH, EMH	EH, EMH	EH

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 2) Stall torque is the maximum torque that can be output continuously when the motor rotation is stopped.

■HG-H Series

	Motor type	HG-H903	HG-H1502
	1-axis type MDS-EH-V1-	160	200
	2-axis type MDS-EH-V2-	160	-
Compatible	3-axis type MDS-EH-V3-	-	=
drive unit	Multi-hybrid type MDS-EMH-SPV3-	-	-
	Regenerative resistor type MDS-EJH-V1	-	-
Output Stall torque Max. torque	□ [N·m]	208.0	152.1
Rated output	[kW]	9.0	15.0
Max. rotation sp	peed [r/min]	3000	2500
Motor inertia	[×10 ⁻⁴ kg·m ²]	196.0	489.0
Motor inertia wi	th a brake [x10-4kg·m²]	206.0	ı
Degree of protection	(The shaft-through portion is excluded.)	IP67	IP44
Outline dimensi (flange type)	on drawing [mm]	204 SQ.	250SQ. 476
Flange fitting di Shaft diameter Mass (with a br Absolute position	[mm]	ø180 ø42 43.0(49.0)	ø230 ø65 120
encoder compatib drive unit		ЕН	EH


■HQ-H Series

Motor type	HQ-H903	HQ-H1103	
Compatible 1-axis type MDS-El	H-V1- 160	160W	
drive unit 2-axis type MDS-El	H-V2- 160	-	
Stall torque	70.0	110.0	
Output Stall torque	N·m] 170	260	
Motor inertia [x10 ⁻⁴ k		3000 350.0	
Motor inertia with a brake [x10⁴k		374.0	
Degree of protection (The shaft-through portion is exc	luded.) IP67	IP67	
Outline dimension drawing (flange type) (Without a brake, Straight shaft, D48 encoder) (Note) The total length will be 3.5mm longer when using a D51 or D74 encoder.	[mm] 346.5	220 SQ. 419.5	
Flange fitting diameter	[mm] ø200	ø200	
Shaft diameter	[mm] Ø55	Ø55	
Mass (with a brake) Absolute position encoder compatible drive unit Mass (with a brake) 67,108,864 [p/rev] (D74,194,304 [p/rev] (D54,194,304 [p/rev] (D44,194,304 [p/rev] (D44	EH	74.0(84.4) EH	

(Note 2) Stall torque is the maximum torque that can be output continuously when the motor rotation is stopped.

LINEAR SERVO MOTOR 400V

■LM-F Series

(Note 1) The maximum speed in actual use is either the linear scale's maximum speed or this specified value, whichever is smaller. (Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

SPINDLE MOTOR 400V

■SJ-4-V Series (Normal)

Moto	or type	SJ-4-V2.2-03T	SJ-4-V3.7-03T	SJ-4-V5.5-07T	SJ-4-V7.5-12T	SJ-4-V7.5-13ZT
Compatible	MDS-EH-SP-	20	20	40	40	80
drive unit	MDS-EMH-SPV3-	-	-	-	-	8040
Output Short-time rai Continuous ra		kW 6 4 2.2 0 1500 6000 100000 r/min Short-time (15min) □	kW 6 4 3.7 2 0 1500 6000 10000 r/min Short-time (15min) □	kW 8 6 6.5.5 4 3.7. 2 0 1500 6000 8000 r/min Short-time (30min) □	8 6 5.5 5.5 600 8000 r/min Short-time (30min)	kW 7.5 6 4 2 0 1500 10000 12000 r/min Short-time (30min) □
Standard output during ac	cceleration/deceleration [kW]	2.2	3.7	5.5	7.5	7.5
Actual acceleration/decel	leration output (Note 2) [kW]	2.64	4.44	6.6	9	9
Base rotation	speed [r/min]	15	00		1500	
Maximum rotat	ion speed [r/min]	100	000	80	00	12000
Continuous rat	ted torque [N·m]	9.5	14.0	23.6	35.0	35.0
Inertia	[kg·m²]	0.007	0.009	0.015	0.025	0.025
Degree of pro	otection	IP44	IP44	IP44	IP44	IP44
Outline dimension drawing	[mm]	174 SQ.	174 SQ.	174 SQ.	204 SQ.	204 SQ.
(flange type)		300	330	425	440	440
Flange fitting dian		ø150	ø150	ø150	ø180	ø180
Shaft diameter		ø28	ø28	ø28	ø32	ø32
Mass	[kg]	25	30	49	60	60

Moto	r type	SJ-4-V11-18T	SJ-4-V18.5-14T	SJ-4-V22-18ZT	SJ-4-V22-15T	SJ-4-V26-08ZT
Compatible	MDS-EH-SP-	80	100	160	160	160
drive unit	MDS-EMH-SPV3-	8040	10040, 10060	-	-	-
Output Short-time rat Continuous ra		kW 20 15 11 11 10 5 0 1500 4500 6000 r/min Short-time (30min)	18.5 15 15 15 15 15 15 15 15 15 1	kW 20 15 15 11 10 10 1500 8000 r/min Short-time (30min) □	kW 30 22 18.5 10 1500 4500 6000 r/min Short-time (30min)	kW 30 26 22 10 1500 6000 10000 r/min
Standard output during ac	celeration/deceleration [kW]	11	18.5	15	22	26
	eration output (Note 2) [kW]	13.2	22.2	18	26.4	31.2
Base rotation		-		1500	-	
	ion speed [r/min]	6000	6000	8000	6000	10000
	ed torque [N·m]	47.7	95.5	70.0	118	140
Inertia	[kg·m²]	0.03	0.06	0.06	0.08	0.10
Degree of pro		IP44	IP44	IP44	IP44	IP44
Outline dimension drawing	[mm]	204 SQ.	250 SQ.	250 SQ.	250 SQ.	250 SQ.
(flange type) Flange fitting dian	neter [mm]	ø180	o230	o230	ø230	ø230
Shaft diamete		ø48	ø48	ø48	ø55	ø48
Mass	[kg]	70	110	110	135	155

- (Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.
- (Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output". (Note 3) The rated output is guaranteed at the rated input voltage (380 to 440VAC 50Hz / 380 to 480VAC 60Hz) to the power supply unit.

If the input voltage fluctuates and drops below 380VAC, the rated output may not be attained.

(Note 4) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

SERVO MOTOR/LINEAR SERVO MOTOR 400V

■SJ-4-V Series (Normal)

	or type	SJ-4-V37-04ZT	SJ-4-V45-02T	SJ-4-V55-03T	
Compatible	MDS-EH-SP-	200	320	320	
drive unit MDS-EMH-SPV3-		-	-	-	
Output Short-time rating Continuous rating		60 40 37 20 1150 3450 6000 17/min Short-time (30min)	40 40 45 37 20 0 1500 4500 r/min Short-time (30min)	155 40 40 45 45 45 45 45 45 45 60 60 60 60 60 60 60 60 60 60 60 60 60	
Standard output during a	acceleration/deceleration [kW]	37	45	55	
Actual acceleration/dece	leration output (Note 2) [kW]	44.4	54	66	
Base rotation	speed [r/min]	1150	1500	1150	
Maximum rota	tion speed [r/min]	6000	4500	3450	
Continuous ra	ted torque [N·m]	249	236	374	
Inertia	[kg·m²]	0.34	0.34	0.85	
Degree of pr	otection	IP44	IP44	IP44	
Outline dimension		320 SQ.	320 SQ.	480 SQ.	
drawing (flange type)	[mm]	700	700	724	
Flange fitting dia	meter [mm]	ø300	ø300	ø450	
Shaft diamet	er [mm]	ø60	ø60	ø75	
Mass	[kg]	300	300	450	

■SJ-4-V Series (Wide range constant output)

Motor	type	SJ-4-V15-20T	SJ-4-V22-16T
	MDS-EH-SP-	100	160
drive unit	MDS-EMH-SPV3-	10040, 10060	-
Output Short-time ratir Continuous rati		15 10 9	15 15 10 5 0 750 6000 r/min Short-time (30min)
Standard output during accele	leration/deceleration [kW]	9	15
Actual acceleration/decelerati	tion output (Note 2) [kW]	10.8	18
Base rotation sp	peed [r/min]	7:	50
Maximum rotation	n speed [r/min]	60	000
Continuous rated	d torque [N·m]	95.5	140
Inertia	[kg·m²]	0.06	0.08
Degree of prote	ection	IP44	IP44
Outline dimension drawing (flange type)	[mm]	250 SQ. 469.5	250 SQ. 539.5
Flange fitting diame		ø230	ø230
Shaft diameter		ø48	ø55
Mass	[kg]	110	135

(Note 1) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 2) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".


(Note 3) The rated output is guaranteed at the rated input voltage (380 to 440VAC 50Hz / 380 to 480VAC 60Hz) to the power supply unit. If the input voltage fluctuates and drops below 380VAC, the rated output may not be attained.

(Note 4) IP code classifies the degree of protection of the motor body. It does not apply to the other electronic parts such as the cooling fan and the encoder.

BUILT-IN SPINDLE MOTOR 400V

■SJ-4BG Series

	pe (Note 1)	SJ-4BG160D/150-01	SJ-4BG180	F/150-01	
Compatible drive unit	MDS-EH-SP-	80	160		
Output Acceleration/Dece %ED rating Continuous i		**************************************	Low-speed coil kW 20 15 15 15 17 11 10 7,50 900 1000 2500 910 1000 2500 1000 1000 1000 1000 1000 10	High-speed coil kW 20 15 15 10 11 10 5 0 15000 15000 15000 r/min %ED rating (40%ED)	
Standard output during a	acceleration/deceleration [kW]	9.0	15	18.5	
	eleration output (Note 3) [kW]	10.8	18	22.2	
		1500	900	1500	
Maximum rota	tion speed [r/min]	15000	2500	15000	
Continuous ra	ated torque [N·m]	23.6	79.6	47.7	
Rotor inertia	[kg·m²]	0.0070	0.0	23	
Outline dimension drawing	[mm]	188	322		
Mass	Stator [kg]	11	2		
	Rotor [kg]	4.2	1	0	

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above.

(Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

(Note 3) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output".

SPINDLE MOTOR/BUILT-IN SPINDLE MOTOR/TOOL SPINDLE MOTOR 400V

■SJ-4BGS Series (Normal)

Motor typ	pe (Note 1)	SJ-4BGS160B/300-01	SJ-4BGS21	0B/120-01	
Compatible drive unit	MDS-EH-SP-	600	160		
Output Acceleration/Dec %ED rating Short-time rat Continuous ra	ting 🔲	kW 80 60 40 20 17500 30000 r/min %ED rating (40%ED) □	Low-speed coil kW 36 27 18 22 9 0 2000 2300 5000 r/min %ED rating (10%ED) \(\infty\)	High-speed coil kW 36 27 18 9 0 5000 12000 6000 r/min %ED rating (40%ED)	
Standard output during ac	coeleration/deceleration [kW	70	30	30	
	eration output (Note 3) [kW		36	36	
Continuous base rotation speed [r/min]			2300	5000	
	ion speed [r/min		5000	12000	
	ed torque [N·m		91.3	42.0	
Rotor inertia	[kg·m²		0.0	020	
Outline dimension [mm] drawing				081	
	Stator [kg	14	1	8	

Motor type	e (Note 1)	SJ-4BGS24	0B/120-01
Compatible drive unit	MDS-EH-SP-	32	20
Output %ED rating Continuous ra	ting 🔲	Low-speed coil kW 40 30 37 20 1500 4000 1500 r/min %ED rating (10%ED) \(\bigsim\) (40%ED) \(\bigsim\)	High-speed coil kW 40 30 37 20 27 10 4000 12000 r/min %ED rating (40%ED) □
tandard output during acco	eleration/deceleration [kW]	37	37
ctual acceleration/decelera	ation output (Note 3) [kW]	44.4	44.4
Continuous base rot	tation speed [r/min]	1600	4000
Maximum rotation	on speed [r/min]	4000	12000
Continuous rated torque [N·m]		161	64.5
Rotor inertia	[kg·m²]	0.0	054
Outline dimension drawing	[mm]		20 00 00 00 00 00 00 00 00 00 00 00 00 0
M	Stator [kg]		8
Mass	Rotor [kg]	1	3

(Note 1) Please contact your Mitsubishi Electric dealer for the special products not listed above. (Note 2) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination. (Note 3) Actual acceleration/deceleration output is 1.2-fold of "Standard output during acceleration/deceleration" or "Short time rated output". (Note 4) SJ-4BGS160B/300-01 is without rotor sleeve, and SJ-4BGS210B/120-01 and SJ-4BGS240B/120-01 are with rotor sleeves.

TOOL SPINDLE MOTOR 400V

■HG-JR Series

Me	otor type	HG-JR734	HG-JR1534	
Compatible drive unit	l-axis type MDS-EH-SP-	20	40	
Output Rated torque Max. torque	[N·m]	7.2	4.8	
Rated output	[kW]	0.75	1.5	
Max. rotation speed	[r/min]	8000		
Motor inertia	[×10 ⁻⁴ kg·m ²]	2.09	3.79	
Degree of protection (The	shaft-through portion is excluded.)	IP	67	
Outline dimension d	rawing [mm]	90SQ.	90SQ. ————————————————————————————————————	
	ter [mm]	080	080	
Flange fitting diame				
Flange fitting diame	[mm]	ø16	ø16	

(Note) Only the combination designated in this manual can be used for the motor and drive unit. Always use the designated combination.

DRIVE UNIT

■MDS-E Series

1-axis servo drive unit

Drive	unit type		MDS-E-V1-20	MDS-E-V1-40	MDS-E-V1-80	MDS-E-V1-160	MDS-E-V1-160W	MDS-E-V1-320	MDS-E-V1-320W				
Drive unit categ	jory					1-axis servo							
Nominal maximum	current (peak)	[A]	20	320									
Power input	Rated voltage [V]			270 to 324DC									
Fower input	Rated current	[A]	7.0	7.0	14	30	35	45	55				
	Voltage	[V]		200 to 240AC Tolerable fluctuation: between +10% and -15%									
Control power input	Current	[A]		MAX. 0.6									
power input	Frequency	[Hz]			50/60 Tolerable	fluctuation: betwee	n +5% and -5%						
Control method			Sine wave PWM control method										
Dynamic brake	S		Built-in External (MDS-D-DBU)										
Machine end en	ncoder		Compatible										
Degree of prote	ection			IP20 (excluding terminal block)									
Cooling method	d .					Forced air cooling							
Mass	Mass [kg]			3.8	3.8	3.8	4.5	5.8	7.5				
Unit outline dimen	Unit outline dimension drawing			A1	A1	A1	B1	C1	D1				

2-axis servo drive unit

Drive	unit type		MDS-E-V2-20	MDS-E-V2-40	MDS-E-V2-80	MDS-E-V2-160	MDS-E-V2-160W						
Drive unit categ	jory				2-axis servo								
Nominal maximum	current (peak) [A	A]	20/20	160/160									
Bower input	Power input Rated voltage [V]			270 to 324DC									
Fower input	Rated current [A	١]	14	14	28	60	70						
	Voltage [\	/]	200 to 240AC Tolerable fluctuation: between +10% and -15%										
Control power input	Current [A	\]		MAX. 0.6									
power input	Frequency [H:	z]	50/60 Tolerable fluctuation: between +5% and -5%										
Control method			Sine wave PWM control method										
Dynamic brake	S		Built-in										
Machine end e	ncoder		Compatible										
Degree of prote	ection			ĮĮ.	P20 (excluding terminal block	()							
Cooling method	i				Forced air cooling								
Mass [kg]			4.5	4.5	4.6	5.2	6.3						
Unit outline dimension drawing			A1	A1	A1	B1	C1						

3-axis servo drive unit

Drive	unit type	MDS-E-V3-20	MDS-E-V3-40	MDS-E-V3-80					
Drive unit categ	gory		3-axis servo						
Nominal maximum	current (peak) [A]	20/20/20	20/20/20 40/40/40						
Devices innust	Rated voltage [V]		270 to 324DC						
Power input	Rated current [A]	21	21	42					
	Voltage [V]	200 to	240AC Tolerable fluctuation: between +10% an	d -15%					
Control power input	Current [A]	MAX. 0.6							
power input	Frequency [Hz]	50	0/60 Tolerable fluctuation: between +5% and -5	%					
Control method		Sine wave PWM control method							
Dynamic brake	s	Built-in							
Machine end e	ncoder		Compatible						
Degree of prote	ection		IP20 (excluding terminal block)						
Cooling method	d	Forced a	ir cooling	Natural-cooling					
Mass	[kg]	4.	6.2						
Unit outline dimen	sion drawing	A	1	B2					

■MDS-E Series

1-axis spindle drive unit

Drive	unit type		MDS-E-SP-20	MDS-E-SP-40	MDS-E-SP-80	MDS-E-SP-160	MDS-E-SP-200	MDS-E-SP-240	MDS-E-SP-320	MDS-E-SP-400	MDS-E-SP-640		
Drive unit categ	jory		1-axis spindle										
Nominal maximum current (peak) [A]			20	40	80	160	200	240	320	400	640		
Power input	Rated voltage	[V]		270 to 324DC									
Fower Input	Rated current	[A]	7.0	13	20	41	76	95	140	150	210		
	Voltage	[V]		200 to 240AC Tolerable fluctuation: between +10% and -15%									
Control power input	Current	[A]					MAX. 0.6						
power input	Frequency	[Hz]		50/60 Tolerable fluctuation: between +5% and -5%									
Control method				Sine wave PWM control method									
Degree of prote	ection			IP20 (excluding terminal block)									
Cooling method	d					F	orced air coolin	g					
Mass	Mass [kg]			3.8	3.8	4.5	5.8	7.5	8.5	15.6	18.3		
Unit outline dimension drawing			A1	A1	A1	B1	C1	D1	D2	E1	F1		

2-axis spindle drive unit

Drive	unit type		MDS-E-SP2-20	MDS-E-SP2-40	MDS-E-SP2-80	MDS-E-SP2-16080						
Drive unit cate	gory			2-axis	spindle							
Nominal maximum current (peak) [A]			20/20	20/20 40/40 80/80 160/8								
Dawer innut	Rated voltage	[V]	270 to 324DC									
Power input	Rated current	[A]	14	26	40	61						
	Voltage	[V]		200 to 240AC Tolerable fluctuation: between +10% and -15%								
Control power input	Current	[A]	MAX. 0.6									
power input	Frequency	[Hz]	50/60 Tolerable fluctuation: between +5% and -5%									
Control method	d		Sine wave PWM control method									
Degree of prot	ection		IP20 (excluding terminal block)									
Cooling metho	d			Forced a	ir cooling							
Mass [kg]			4.5	4.5	5.2	5.2						
Unit outline dimension drawing			A1	A1 A1 B1								

Power supply unit

Power s	supply unit		MDS-E-CV-37	MDS-E-CV-75	MDS-E-CV-110	MDS-E-CV-185	MDS-E-CV-300	MDS-E-CV-370	MDS-E-CV-450	MDS-E-CV-550			
30-minute rate	d output	[kW]	3.7	7.5	11.0	18.5	30.0	37.0	45.0	55.0			
Continuous rated output [kW]		[kW]	2.2	5.5	7.5	15.0	26.0	30.0	37.0	45.0			
Dancar innut	Rated voltage	[V]		200 to 240AC Tolerable fluctuation: between +10% and -15%									
Power input	Rated current	[A]	15	26	35	65	107	121	148	200			
Control power input	Voltage	[V]		200 to 240AC Tolerable fluctuation: between +10% and -15%									
	Current	[A]		MAX. 0.2									
power input	Frequency	[Hz]		50/60 Tolerable fluctuation: between +5% and -5%									
Regeneration r	method			Power regeneration method									
Degree of prote	ection			IP20 (excluding terminal block)									
Cooling metho	d		Natural-	-cooling			Forced a	ir cooling					
Mass [kg]		[kg]	3.5	3.5	5.6	5.7	10.6	11.2	11.7	25.5			
Unit outline dimension drawing			A2	A2	B1	B1	D1	D1	D2	F1			

AC reactor

AC reactor	model	D-AL-7.5K	D-AL-11K	D-AL-18.5K	D-AL-30K	D-AL-37K	D-AL-45K	D-AL-55K			
Compatible power supply unit type	MDS-E-CV-	37, 75	110	185	300	370	450	550			
Rated capacity [kW]		7.5	11	18.5	30	37	45	55			
Rated voltage	[V]		200 to 240AC Tolerable fluctuation: between +10% and -15%								
Rated current	[A]	27	40	66	110	133	162	198			
Frequency	[Hz]		50/60 Tolerable fluctuation: between +5% and -5%								
Mass [kg]		4.2	3.7	5.3	6.1	8.6	9.7	11.5			
Unit outline dimension	drawing	R1	R1	R2	R2	R3	R3	R4			

DRIVE UNIT

■MDS-EH Series

1-axis servo drive unit

Drive	unit type		MDS-EH-V1-10	MDS-EH-V1-20	MDS-EH-V1-40	MDS-EH-V1-80	MDS-EH-V1-80W	MDS-EH-V1-160	MDS-EH-V1-160W	MDS-EH-V1-200			
Drive unit categ	jory					1-axis	servo						
Nominal maximum	current (peak)	[A]	10	20	40	80	80	160	160	200			
Power input	Rated voltage	[V]	513 to 648DC										
rower input	Rated current	[A]	0.9	1.6	2.9	6.0	8.0	11.9	16.7	39			
Control	Voltage	[V]		380 to 480AC Tolerable fluctuation: between +10% and -15%									
Control power input	Current	[A]				MAX	(. 0.3						
power input	Frequency	[Hz]		50/60 Tolerable fluctuation: between +5% and -5%									
Control method			Sine wave PWM control method										
Dynamic brake	S		Built-in External (MDS-D-DBU)										
Degree of prote	ection			IP20 (excluding terminal block)									
Cooling method	ŀ		Natural-cooling				Forced air cooling	J					
Mass	Mass [kg			3.8	3.8	3.8	4.5	5.8	7.5	15.4			
Unit outline dimen	Unit outline dimension drawing			A1	A1	A1	B1	C1	D1	E1			

2-axis servo drive unit

Drive	unit type		MDS-EH-V2-10	MDS-EH-V2-20	MDS-EH-V2-40	MDS-EH-V2-80	MDS-EH-V2-80W	MDS-EH-V2-160				
Drive unit cate	gory		2-axis servo									
Nominal maximum	current (peak)	[A]	10/10 20/20 40/40 80/80 80/80				80/80	160/160				
Dawer innut	Rated voltage [V]				513 to	648DC						
Power input	Rated current	[A]	1.8	3.2	5.8	12	16	23.8				
Control	Voltage	[V]	380 to 480AC Tolerable fluctuation: between +10% and -15%									
Control power input	Current	[A]			MAX	. 0.3						
power input	Frequency	[Hz]	50/60 Tolerable fluctuation: between +5% and -5%									
Control method	i		Sine wave PWM control method									
Dynamic brake	s		Built-in									
Degree of prote	ection			IP20 (excluding terminal block)								
Cooling method	d		Natural-cooling			Forced air cooling						
Mass [kg]			4.6	4.6	4.6	5.2	6.3	7.2				
Unit outline dimension drawing			A1	A1	A1	B1	C1	C1				

3-axis servo drive unit

Drive	unit type		MDS-EH-V3-40
Drive unit cated	gory		3-axis servo
Nominal maximum	Nominal maximum current (peak) [A]		40/40/40
Bower input	Rated voltage [V]		513 to 648DC
rower input	Power input Rated current [A]		8.7
O-mtm-1	Voltage	[V]	380 to 480AC Tolerable fluctuation: between +10% and -15%
Control power input	Current	[A]	MAX. 0.3
power input	Frequency	[Hz]	50/60 Tolerable fluctuation: between +5% and -5%
Control method	t		Sine wave PWM control method
Dynamic brake	s		Built-in
Degree of prote	ection		IP20 (excluding terminal block)
Cooling method	d		Natural-cooling Natural Natura Nat
Mass			6.2
Unit outline dimen	sion drawing		B2

1-axis spindle drive unit

Drive	Drive unit type		MDS-EH-SP-20	MDS-EH-SP-40	MDS-EH-SP-80	MDS-EH-SP-100	MDS-EH-SP-160	MDS-EH-SP-200	MDS-EH-SP-320	MDS-EH-SP-480	MDS-EH-SP-600		
Drive unit categ	jory			1-axis spindle									
Nominal maximum of	current (peak)	[A]	20	40	80	100	160	200	320	480	600		
Power input	Rated voltage	[V]				513 to	648DC				513 to 700DC		
rower input	Rated current	[A]	10	15	21	38	72	82	119	150	200		
Control	Voltage	[V]		380 to 480AC Tolerable fluctuation: between +10% and -15%									
power input	Current	[A]		MAX. 0.3									
power input	Frequency	[Hz]	50/60 Tolerable fluctuation: between +5% and -5%										
Control method				Sine wave PWM control method									
Degree of prote	ection					IP20 (e:	cluding termina	al block)					
Cooling method						F	orced air coolin	g					
Mass	Mass [kg]		3.8	3.8	4.5	5.8	7.5	15.4	15.4	18.3	20.1		
Unit outline dimension drawing		A1	A1	B1	C1	D1	E1	E1	F1	F1			

(Note) Rated output capacity and rated speed of the motor used in combination with the drive unit are as indicated when using the power supply voltage and frequency listed. The torque drops when the voltage is less than specified.

■MDS-EH Series

Power supply unit

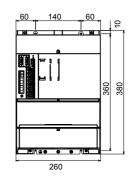
Power sup	ply unit typ	е	MDS-EH-CV-37	MDS-EH-CV-75	MDS-EH-CV-110	MDS-EH-CV-185	MDS-EH-CV-300	MDS-EH-CV-370	MDS-EH-CV-450	MDS-EH-CV-550	MDS-EH-CV-750		
30-minute rated output [kW]			3.7	7.5	11.0	18.5	30.0	37.0	45.0	55.0	75.0		
Continuous rate	ed output	[kW]	2.2	5.5	7.5	15	26	30	37	45	55		
Power input	Rated voltage	[V]		380 to 480AC Tolerable fluctuation: between +10% and -15%									
rower input	Rated current	[A]	5.2	13	18	35	61	70	85	106	130		
Control	Voltage	[V]		380 to 480AC Tolerable fluctuation: between +10% and -15%									
power input	Current	[A]		MAX. 0.1									
power input	Frequency	[Hz]	50/60 Tolerable fluctuation: between +5% and -5%										
Main circuit me	thod			Converter with power regeneration circuit									
Degree of prote	ection			IP20 (excluding terminal block)									
Cooling method						F	orced air coolin	g					
Mass	Mass [kg]		5.7	5.7	6.0	6.0	10.0	10.0	10.0	25.5	25.5		
Unit outline dimension drawing		B1	B1	B1	B1	D1	D1	D1	F1	F1			

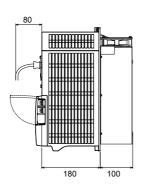
AC reactor

AC reactor model		DH-AL-7.5K	DH-AL-11K	DH-AL-18.5K	DH-AL-30K	DH-AL-37K	DH-AL-45K	DH-AL-55K	DH-AL-75K
Compatible power supply unit type	MDS-EH-CV-	37, 75	110	185	300	370	450	550	750
Rated capacity	[kW]	7.5	11	18.5	30	37	45	55	75
Rated voltage	[V]	380 to 480AC Tolerable fluctuation: between +10% and -15%							
Rated current [A]		14	21	37	65	75	85	105	142
Frequency	[Hz]	50/60 Tolerable fluctuation: between +5% and -5%							
Mass	[kg]	4.0	3.7	5.3	6.0	8.5	9.8	10.5	13.0
Unit outline dimension of	drawing	R1	R1	R2	R2	R3	R3	R5	R6

DRIVE UNIT

Unit Outline Dimension Drawing Unit [mm] B2 В1 **A**1 D1 C1 D2 E1 F1 300 R2 R1 R3 R4 R5 R6

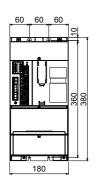

■MDS-EM/EMH Series Multi-hybrid drive unit

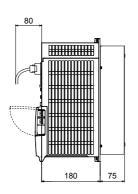

Drive unit type		MDS-EM- SPV3-10040	MDS-EM- SPV3-10080	MDS-EM- SPV3-16040	MDS-EM-SPV3- 16040S	MDS-EM- SPV3-16080	MDS-EM- SPV3-20080	MDS-EM- SPV3-200120	MDS-EM- SPV3-320120	
Drive unit cate	jory			3-a	xis servo, 1-axis sp	oindle (with conve	rter)			
Nominal maximum curre	nt (spindle/servo) [A	100/40×3	100/80×3	160/40×3	160/40×3	160/80×3	200/80×3	200/120×3	320/120×3	
Dawer innet	Rated voltage [\	7		200 to 240A	C Tolerable fluctua	tion: between +10	0% and -15%			
Power input	Rated current [A	36	38	45	45	48	60	65	121	
	Voltage [\	7	24DC Tolerable fluctuation: between +10% and -10%							
Control power input	Current [A	1]	MAX. 4							
power input	Frequency [H:	:]	50/60 Tolerable fluctuation: between +5% and -5%							
Control method			Sine wave PWM control method							
Regeneration r	nethod		Power regeneration method							
Dynamic brake	s (servo)		Built-in							
Machine end e	ncoder (servo)		Compatible							
Degree of protection			IP20 (excluding terminal block)							
Cooling method			Forced air cooling							
Mass	[kṛ	14	14	14	14.5	14	14	14	20.7	

Drive unit type		MDS-EMH-SPV3-8040	MDS-EMH-SPV3-10040	MDS-EMH-SPV3-10060			
Drive unit cate	gory		3-axis servo, 1-axis spindle (with converter)				
Nominal maximum curre	ent (spindle/servo) [A]	80/40×3	100/40×3	100/60×3			
Davier innut	Rated voltage [V]	380 to	480AC Tolerable fluctuation: between +10% an	d -15%			
Power input	Rated current [A]	27	34	37			
	Voltage [V]	24DC Tolerable fluctuation: between +10% and -10%					
Control power input	Current [A]	MAX. 4					
power input	Frequency [Hz]	50/60 Tolerable fluctuation: between +5% and -5%					
Control method	d	Sine wave PWM control method					
Regeneration i	method	Power regeneration method					
Dynamic brake	es (servo)	Built-in					
Machine end e	encoder (servo)	Compatible					
Degree of protection		IP20 (excluding terminal block)					
Cooling method		Forced air cooling					
Mass [kg]		15	15	15			

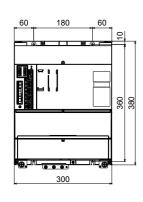
Unit outline dimension drawing < MDS-EM-SPV3-10040 to 200120 >

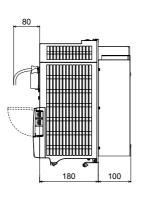
- < MDS-EMH-SPV3-8040 to 10060 >





[Unit : mm]


[Unit:mm]


< MDS-EM-SPV3-16040S >

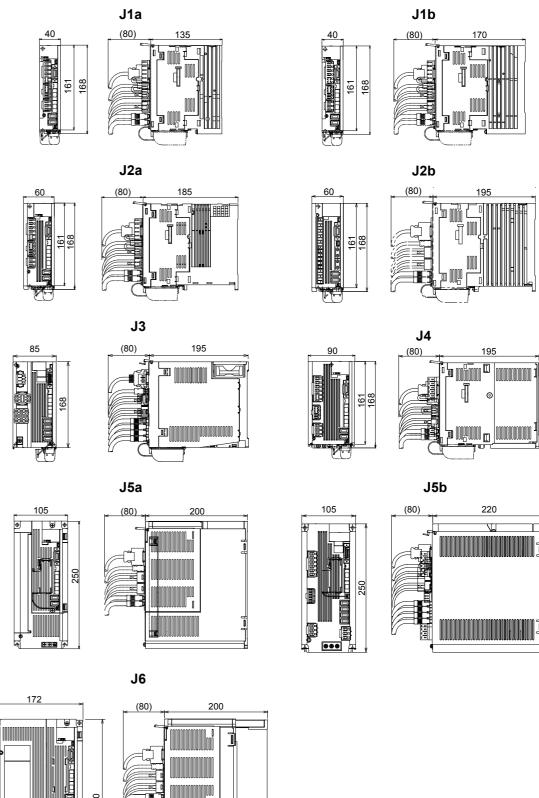
< MDS-EM-SPV3-320120 >

■MDS-EJ/EJH Series

All-in-one compact servo drive unit

Drive unit type			MDS-EJ-V1-10	MDS-EJ-V1-15	MDS-EJ-V1-30	MDS-EJ-V1-40	MDS-EJ-V1-80	MDS-EJ-V1-100	
Drive unit cated	gory				1-axis servo (with converter)			
Nominal maximum	current (peak)	[A]	10	15	30	40	80	100	
Davier innut	Rated voltage	[V]	3-phase or single-phase 200	to 240AC Tolerable fluctuation	on: between +10% and -15%	3-phase 200 to 240AC	Tolerable fluctuation: be	etween +10% and -15%	
Power input	Rated current	[A]	1.5	2.9	3.8	8.0	10.5	16	
	Voltage	[V]		Single-phase	200 to 240AC Tolerable	fluctuation: between +1	0% and -15%		
Control power input	Current	[A]	MAX. 0.2						
power input	Frequency	[Hz]	50/60 Tolerable fluctuation: between +5% and -5%						
Control method	t		Sine wave PWM control method						
Regeneration r	method		Power regeneration method						
Dynamic brake	s		Built-in						
Machine end e	ncoder		Compatible						
Degree of protection			IP20						
Cooling method		Natural	cooling		Forced air cooling				
Mass		[kg]	0.8	1.0	1.4	2.1	2.1	2.3	
Unit outline dimen	Unit outline dimension drawing		J1a	J1b	J2a	J4	J4	J4	

Drive unit type		MDS-EJ-V2-30	MDS-EJ-V2-40			
Drive unit cate	gory	2-axis servo (with converter)				
Nominal maximum	current (peak) [A]	30/30	40/40			
D	Rated voltage [V]	3-phase 200 to 240AC Tolerable flu	uctuation: between +10% and -15%			
Power input	Rated current [A]	7.6	16.0			
	Voltage [V]	Single-phase 200 to 240AC Tolerable fluctuation: between +10% and -15%				
Control power input	Current [A]	MAX. 0.4				
power input	Frequency [Hz]	50/60 Tolerable fluctuation: between +5% and -5%				
Control metho	t	Sine wave PWM control method				
Regeneration	method	Power regeneration method				
Dynamic brake	es	Built-in				
Machine end e	ncoder	Compatible				
Degree of prot	ection	IP20				
Cooling method		Forced a	ir cooling			
Mass [kg]		1.9	4.6			
Unit outline dimer	sion drawing	J3	J5b			


Drive unit type			MDS-EJH-V1-10	MDS-EJH-V1-15	MDS-EJH-V1-20	MDS-EJH-V1-40			
Drive unit cate	gory		1-axis servo (with converter)						
Nominal maximum	current (peak)	[A]	10	15	20	40			
Dawer innut	Rated voltage	[V]		3-phase 380 to 480AC Tolerable flu	uctuation: between +10% and -15%				
Power input	Rated current	[A]	1.4	2.5	5.1	7.9			
	Voltage	[V]	S	Single-phase 380 to 480AC Tolerable fluctuation: between +10% and -15%					
Control power input	Current	[A]		MAX. 0.2					
power input	Frequency	[Hz]							
Control method	d		Sine wave PWM control method						
Regeneration r	method		Power regeneration method						
Dynamic brake	es		Built-in						
Machine end e	encoder		Compatible						
Degree of prote	ection		IP20						
Cooling method			Natural cooling Forc			d air cooling			
Mass		[kg]	1.7	1.7	2.1	3.6			
Unit outline dimension drawing			J	2b	J4	J5a			

DRIVE UNIT

All-in-one compact spindle drive unit

Drive unit type		MDS-EJ-SP-20	MDS-EJ-SP-40	MDS-EJ-SP-80	MDS-EJ-SP-100	MDS-EJ-SP-120	MDS-EJ-SP-160			
Drive unit cate	gory		1-axis spindle (with converter)							
Nominal maximum	current (peak) [A]	20	40	80	100	120	160			
Dawas innut	Rated voltage [V]		3-phase 20	00 to 240AC Tolerable flu	uctuation: between +10%	% and -15%				
Power input	Rated current [A]	2.6	9.0	10.5	16	26	35.4			
	Voltage [V]		Single-phase 200 to 240AC Tolerable fluctuation: between +10% and -15%							
Control power input	Current [A]		MAX. 0.2							
power input	Frequency [Hz]		50/60 Tolerable fluctuation: between +5% and -5%							
Control method	1		Sine wave PWM control method							
Regeneration i	method	Power regeneration method								
Degree of prot	ection		IP20			IP20 (excluding terminal block)				
Cooling method			Forced air cooling							
Mass [kg]		1.4	2.1	2.3	4.0	4.0	6.2			
Unit outline dimension drawing		J2a	J4	J4	J5a	J5a	J6			

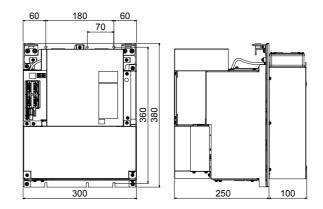
Drive	unit type	MDS-EJ-SP2-20
Drive unit cate	gory	2-axis servo (with converter)
Nominal maximum	current (peak) [A]	20/20
Dawer innut	Rated voltage [V]	3-phase 200 to 240AC Tolerable fluctuation: between +10% and -15%
Power input	Rated current [A]	5.2
	Voltage [V]	Single-phase 200 to 240AC Tolerable fluctuation: between +10% and -15%
Control power input	Current [A]	MAX. 0.4
power input	Frequency [Hz]	50/60 Tolerable fluctuation: between +5% and -5%
Control method	i i	Sine wave PWM control method
Regeneration r	nethod	Power regeneration method
Degree of prote	ection	IP20 (excluding terminal block)
Cooling method	d	Forced air cooling
Mass [kg]		1.9
Unit outline dimen	sion drawing	J3

Unit outline dimension drawing

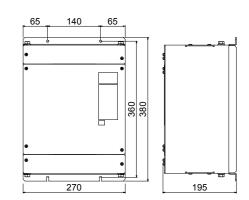
Unit [mm]

■MDS-EX-CVP Series

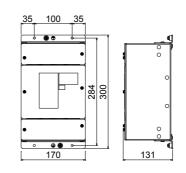
Power supply unit

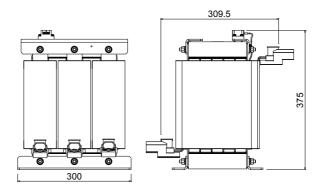

Power supply unit type			MDS-EX-CVP-1100H	MDS-EX-FTB-1100H	MDS-EX-FB-1100H			
30-minute rate	d output	[kW]		110				
Continuous rat	ed output	[kW]	90					
Power input	Rated voltage	[V]		AC380 to 480				
Fower input	Rated current	[A]		154				
	Voltage	[V]	AC380 to 480	-	-			
Control power input	Current	[A]	0.3	-	-			
porror input	Frequency	[Hz]	50/60 (Allowable range: 47 to 63)	-				
Main circuit me	thod		PWM converter	Filter circuit	Fuse circuit			
Degree of prote	Degree of protection		Open (IP20 (excluding terminal block))					
Cooling method	Cooling method		Forced air cooling	Forced air cooling Natural-cooling				
Mass		[kg]	36.0	11.5	5.8			

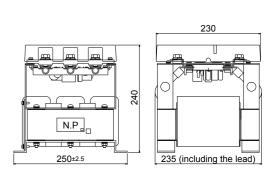
AC reactor


AC read	tor model	MDS-EX-ALC-1100H	MDS-EX-ALF-1100H		
Compatible power supply unit model	MDS-EX-CVP-	110	00H		
30-minute rated	d output [kW]	110			
Continuous rate	ed output [kW]	90			
Rated voltage	[V]	AC380 to 480			
Rated current	[A]	154			
Frequency	[Hz]	47 to 63			
Mass	[kg]	90.0 24.5			

Unit outline dimension drawing


< MDS-EX-CVP-1100H >


< MDS-EX-FTB-1100H >


< MDS-EX-FB-1100H >

< MDS-EX-ALC-1100H >

< MDS-EX-ALF-1100H >

DRIVE UNIT

SELECTION OF THE POWER SUPPLY UNIT

For the power supply unit, calculate the spindle motor output and servo motor output each, and select the capacity satisfying the required rated capacity and the maximum momentary output.

■Calculation of Spindle Output

The spindle rated output and spindle maximum momentary rated output are calculated.

(1) Calculation of spindle rated output

The spindle rated output is calculated according to the following procedure.

(a) Spindle motor rated output

The spindle motor rated output is calculated from the following expression.

Spindle motor rated output =

MAX (continuous rated output, short-time rated output × short-time rated output coefficient α, %ED rated output × %ED rated output coefficient β)

(Note 1) For the spindle motor rated output, use the maximum value of "continuous rated output", "shorttime rated output \times short-time rated output coefficient α ", and "%ED rated output \times %ED rated output coefficient β ".

(Note 2) Select the maximum value for the spindle motor with multiple %ED rated output characteristics.

For the spindle short-time rated output coefficient α , use the value in the following table.

List of short-time rated output time and short-time rated output coefficient

Short-time rated output time	Short-time rated output coefficient α	Short-time rated output time	Short-time rated output coefficient α
1 minute	0.2	5 minutes	0.7
2 minutes	0.4	6~7 minutes	0.8
3 minutes	0.5	8~9 minutes	
	0.5		0.9
4 minutes	0.6	10 minutes or more	1.0

(Note 1) Select the set time for the short-time rated output of your spindle motor from the list. E.g.) When the set time for the short-time rated output is "1/12h", it means "5 minutes".

(Note 2) For the motor with coil changeover specification, select the set time for the short-time rated output of the high-speed coil.

For the %ED rated output coefficient β , use the value in the following table.

List of %ED rated output time and %ED rated output coefficient

%ED rated output time	%ED rated output coefficient β
More than or equal to 10% but less than 20%	0.7
More than or equal to 20% but less than 30%	0.9
More than or equal to 30%	1.0

(b) Spindle rated output

The spindle rated output is calculated from the following expression.

Spindle rated output

=Spindle motor rated output × motor output coefficient γ of the combined spindle drive unit

For the spindle motor rated output of the above expression, use the value calculated in (a).

For the motor output coefficient of the combined spindle drive unit, use the value corresponding to the used spindle drive unit in the in the following table.

Motor output coefficient list of combined spindle drive unit

< MDS-E Series >

Spindle motor		Combined spindle drive unit MDS-E-SP-									
rated output	20	40	80	160	200	240	320	400	640		
to 1.5kW	1.00	1.15	1.25	_	_	_	_	_	_		
to 2.2kW	_	1.00	1.15	1.30	_	_	_	_	_		
to 3.7kW	_	1.00	1.05	1.20	_	_	_	_	_		
to 5.5kW	_	_	1.00	1.10	1.20	_	_	_	_		
to 7.5kW	_	_	_	1.00	1.15	1.20	_	_	_		
to 11.0kW	_	_	_	1.00	1.05	1.10	1.15	_	_		
to 15.0kW	_	_	_	_	1.00	1.05	1.10	_	_		
to 18.5kW	_	_	_	_	1.00	1.00	1.05	1.10	_		
to 22kW	_	_	_	_	_	1.00	1.00	1.05	1.15		
to 26kW	_	_	_	_	_	_	1.00	1.00	1.10		
to 30kW	_	_	_	_	_	_	1.00	1.00	1.05		
to 37kW	_	_	_	_	_	_	_	1.00	1.05		
to 45kW	_	_	_	_	_	_	_	_	1.0		
to 55kW	_	_	_	_	_	_	_	_	1.0		

< MDS-EH Series >

Spindle motor		Combined spindle drive unit MDS-EH-SP-									
rated output	20	40	80	100	160	200	320	480	600		
to 2.2kW	1.00	1.15	1.30	_	_	_	_	_	_		
to 3.7kW	1.00	1.05	1.20	_	_	_	_	_	_		
to 5.5kW	_	1.00	1.10	1.20	_	_	_	_	_		
to 7.5kW	_	_	1.00	1.15	_	_	_	_	_		
to 11.0kW	_	_	1.00	1.05	1.15	_	_	_	_		
to 15.0kW	_	_	_	1.00	1.10	_	_	_	_		
to 18.5kW	_	_	_	1.00	1.05	1.10	_	_	_		
to 22kW	_	_	_	_	1.00	1.05	1.15	_	_		
to 26kW	_	_	_	_	1.00	1.00	1.10	1.20	_		
to 30kW	_	_	_	_	1.00	1.00	1.05	1.15	_		
to 37kW	_	_	_	_	_	1.00	1.05	1.10	1.10		
to 45kW	_	_	_	_	_	_	1.00	1.05	1.05		
to 55kW	_	_	_	_	_	_	1.00	1.00	1.00		
to 75kW	_	_	_	_	_	_	_	1.00	1.00		

POINT

- [1] When the spindle motor applies to the wide range constant output specification or the high-torque specification, the spindle rated output may become large.
- [2] The spindle rated output is calculated from the motor output coefficient of the spindle drive unit used in combination with the spindle motor.

SELECTION

(2) Calculation of spindle maximum momentary output

The spindle maximum momentary output is calculated from the following expression.

Spindle maximum momentary output

=MAX (short-time rated output × 1.2, output at acceleration/deceleration × 1.2, %ED rated output×1.2)

(Note) For the spindle rated output, use the largest one among "short-time rated output × 1.2", "output at acceleration/ deceleration × 1.2" and "%ED rated output×1.2".

■Calculation of Servo Motor Output

(1) Selection with rated output

(2) Selection with maximum momentary output

For the rated output and maximum momentary output of the servo motor, use the value corresponding to the servo motor in the following table.

Data for servo motor output selection

< 200V series >

Motor HG	46	56	96
Rated output (kW)	0.2	0.4	0.75
Maximum momentary output (kW)	0.85	1.7	3.2

Motor HG	75	105	54	104	154	154 (V3-40)	224	204	354
Rated output (kW)	0.75	1.0	0.5	1.0	1.5	1.5	2.2	2.0	3.5
Maximum momentary output (kW)	2.2	3.5	2.3	5.0	9.0	5.4	12.3	8.0	18.0

Motor HG	123	223	303	453	603	702	703	903	1103	142	302
Rated output (kW)	1.2	2.2	3.0	4.5	6.0	7.0	7.0	9.0	11.0	1.4	3.0
Maximum momentary output (kW)	3.2	6.3	12.0	22.0	26.9	21.2	27.0	41.0	50.0	3.2	6.3

< 400V series >

Motor HG-H	75	105	54	104	154	224	204	354	453	703	903	1502
Rated output (kW)	0.75	1.0	0.5	1.0	1.5	2.2	2.0	3.5	4.5	7.0	9.0	15.0
Maximum momentary output (kW)	2.2	3.5	2.3	5.0	9.0	13.1	8.0	18.0	22.0	27.0	41.0	59.0

Motor HQ-H	903	1103
Rated output (kW)	9.0	11.0
Maximum momentary output (kW)	31.0	47.0

(Note) The maximum momentary output in this table is reference data for selecting the power supply unit and is not data which guarantees the maximum output.

■Selection of the Power Supply Unit

Select the power supply unit from the total sum of the rate output and the maximum momentary output.

(1) Calculation of required rated output

Power supply unit rated capacity > Σ (Spindle rated output) + 0.3 Σ (Servo motor rated output)

Substitute the output calculated from (1) of "Calculation of spindle output" and (1) of "Calculation of servo motor output" to the above expression, and calculate the total sum of the spindle rated output and servo motor rated output. According to this, select the power supply unit satisfying the rated capacity from the following table.

(2) Calculation of required maximum momentary output

Maximum momentary rated capacity of power supply unit ≥

 Σ (Spindle maximum momentary output) + Σ (Maximum momentary output of servomotor accelerating/ decelerating simultaneously + Maximum momentary output of direct drive motor accelerating/ decelerating simultaneously)

Substitute the output calculated from (2) of "Calculation of spindle output" and (2) of "Calculation of servo motor output" to the above expression, and calculate the total sum of the "spindle maximum momentary output" and "output of servo motor accelerating/decelerating simultaneously". According to this, select the power supply unit satisfying the maximum momentary rated capacity from the following table.

(3) Selection of power supply unit

Select the power supply unit of which the capacity is larger than that selected in the item (1) and (2).

Power supply unit rated capacity and maximum momentary rated capacity

< MDS-E Series >

· = 0	000 /								
Unit	MDS-E-CV-	37	75	110	185	300	370	450	550
Rated ca	apacity (kW)	4.2	8	11.5	19	31	38	46	56
	entary rated capacity (kW)	16	23	39	60	92	101	125	175

- MDS-EH Sorios

< MIDS-LIT	Jenes >									
Unit	MDS-EH-CV-	37	75	110	185	300	370	450	550	750
Rated c	apacity (kW)	4.2	8	11.5	19	31	38	46	56	76
	entary rated capacity (kW)	16	23	39	60	92	101	125	175	180

< MDS-EX-CVP Series >

Unit	MDS-EX-CVP-	1100H
Rated c	apacity (kW)	90
	entary rated capacity (kW)	220

1. When reducing the time constant replacing the conventional motor with the HG or HG-H Series motor, the power supply capacity may rise because the motor maximum momentary output increases more than the conventional motor. Therefore, make sure to check the selection with maximum momentary rated capacity.

- 2. When the large capacity drive unit (MDS-E-SP-400/640, MDS-EH-SP-200/320/480/600, MDS-EH-V1-200) is connected to the power supply unit, always install the drive unit proximally in the left side of the power supply unit and connect PN terminal with the dedicated DC
- 3. When using two large capacity drive units or more, the power supply unit is required for each drive unit.
- 4. For details of selection of MDS-EX-CVP Series, refer to "MDS-EX-CVP Series Specifications and Instruction Manual"(IB-1501587(ENG)).

SELECTION

SELECTION

■Required Capacity of Power Supply

For the power supply capacity, calculate the required spindle rated output and servo motor rated output each, and select the power supply capacity satisfying them.

(1) Spindle rate output required for power supply

The spindle rate output required for power supply is calculated from the following expression.

Spindle rate output required for power supply =

MAX (Spindle motor continuous rated output, Spindle motor output at accelerating/decelerating, Spindle motor short-time output) \times motor output coefficient γ of combined spindle drive unit

(Note) For the spindle rate output required for the power supply, multiply the largest one of "spindle motor continuous rate output", "spindle motor output at acceleration/deceleration" and "spindle motor short-time output" by the motor output coefficient y of the combined spindle drive unit. For the motor output coefficient of the combined spindle drive unit, use the value corresponding to the used spindle drive unit in "Motor output coefficient list of combined spindle drive unit " on (1)-(b) of "Calculation of spindle output"

(2) Servo motor rate output required for power supply

For the servo motor rate output required for power supply, use the value calculated in (1) of "Calculation of servo motor output"

(3) Calculation of rate output required for power supply

Rated capacity required for power supply =

 Σ (Spindle rate output required for power supply) + 0.3 Σ (servo motor rate output required for

Substitute the output calculated from the item (1) and (2) to the above expression, and calculate the rated capacity required for the power supply.

(4) Calculation of required power supply

Power supply capacity (kVA) = Σ (Required rated capacity calculated in the item (3) (kW) / Capacity of selected power supply unit (kW)) × Power supply capacity base value (kVA)}

The power supply capacity base value corresponding to the capacity of the selected power supply unit is as the following table.

< MDS-E Series >

Unit	MDS-E-CV-	37	75	110	185	300	370	450	550
Power supply cap	acity base value (kVA)	5.3	11.0	16.0	27.0	43.0	53.0	64.0	78.0
14D0 EII	•								

< MDS-EH Series >

Unit	MDS-EH-CV-	37	75	110	185	300	370	450	550	750
Power supply cap	acity base value (kVA)	5.3	11.0	16.0	27.0	43.0	53.0	64.0	78.0	107.0

< MDS-EX-CVP Series >

Unit	MDS-EX-CVP-	1100H
Power supply cap	acity base value (kVA)	130

■Example for Power Supply Unit and Power Supply Facility Capacity

< MDS-E Series >

(Example 1)

Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X-axis	HG354	(MDS-E-V2-160)	3.5kW	18kW
Y-axis	HG354	(MDS-E-V2-160)	3.5kW	18kW
Z-axis	HG354	(MDS-E-V1-160)	3.5kW	18kW
Spindle	Spindle motor 22kW	MDS-E-SP-320 (Output coefficient 1.0)	22kW	26.4kW
Total			0.3× (3.5×3) +22 =25.15kW <31kW (E-CV-300)	(18×3) +26.4 =80.4kW <92kW (E-CV-300)

The power supply unit satisfying the total of the rate output and the maximum momentary output is MDS-E-CV-300. Required power supply capacity (kVA) = $(25.15 / 30) \times 43 = 36.0$ (kVA)

(Example 2)

Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X1-axis	HG453	(MDS-E-V2-160)	4.5kW	22kW
X2-axis	HG453	(MDS-E-V2-160)	4.5kW	22kW
Y-axis	HG354	(MDS-E-V2-160)	3.5kW	18kW
Z-axis	HG354	(MDS-E-V2-160)	3.5kW	18kW
Spindle	Spindle motor 15kW	MDS-E-SP-200 (Output coefficient 1.0)	15kW	18kW
	Total		0.3× (4.5×2+3.5×2) +15 =19.8kW <31kW (E-CV-300)	22×2+18×2+18 =98.0kW <101kW (E-CV-370)

The power supply unit satisfying the total of the rate output and the maximum momentary output is MDS-E-CV-370. Required power supply capacity (kVA) = $(19.8 / 37) \times 53 = 28.4$ (kVA)

(Example 3)

Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X-axis	HG354	MDS-E-V1-160	3.5kW	18kW
Y-axis	HG204	MDS-E-V2-80	2.0kW	8kW
Z-axis	HG204	MDS-E-V2-80	2.0kW	8kW
Spindle	Spindle motor 15kW (High-torque motor)	MDS-E-SP-320 (Output coefficient 1.1)	16.5kW	18kW
Total			0.3× (3.5+2.0×2) +16.5 =18.75kW <19kW (E-CV-185)	18+8×2+18 =52kW <60kW (E-CV-185)

The power supply unit satisfying the total of the rate output and the maximum momentary output is MDS-E-CV-185.

Required power supply capacity (kVA) = (18.75 / 18.5) × 27 = 27.4 (kVA)

SELECTION

< MDS-EH Series >

(Example 1)

Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X-axis	HG-H354	(MDS-EH-V2-80)	3.5kW	18kW
Y-axis	HG-H354	(MDS-EH-V2-80)	3.5kW	18kW
Z-axis	HG-H354	(MDS-EH-V1-80)	3.5kW	18kW
Spindle	Spindle motor 22kW	MDS-EH-SP-160 (Output 22kW)	22kW	26.4kW
Total			0.3× (3.5×3) +22 =25.15kW <31kW (EH-CV-300)	(18×3) +26.4 =80.4kW <92kW (EH-CV-300)

The power supply unit satisfying the total of the rate output and the maximum momentary output is MDS-EH-CV-300.

Required power supply capacity (kVA) = $(25.15 / 30) \times 43 = 36.0$ (kVA)

(Example 2)

	•			
Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X1-axis	HG-H453	(MDS-EH-V2-80)	4.5kW	22kW
X2-axis	HG-H453	(MDS-EH-V2-80)	4.5kW	22kW
Y-axis	HG-H354	(MDS-EH-V2-80)	3.5kW	18kW
Z-axis	HG-H354	(MDS-EH-V2-80)	3.5kW	18kW
Spindle	Spindle motor 15kW	MDS-EH-SP-100 (Output coefficient 1.0)	15kW	18kW
	Total		0.3× (4.5×2+3.5×2) +15 =19.8kW <31kW (EH-CV-300)	22×2+18×2+18 =98.0kW <101kW (EH-CV-370)

The power supply unit satisfying the total of the rate output and the maximum momentary output is MDS-EH-CV-370.

Required power supply capacity (kVA) = (19.8 / 37) × 53 = 28.4 (kVA)

(Example 3)

Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X-axis	HG-H354	MDS-EH-V1-160	3.5kW	18kW
Y-axis	HG-H204	MDS-EH-V2-80	2.0kW	8kW
Z-axis	HG-H204	MDS-EH-V2-80	2.0kW	8kW
Spindle	Spindle motor 15kW (High-torque motor)	MDS-EH-SP-320 (Output coefficient 1.1)	16.5kW	18kW
Total			0.3× (3.5+2.0×2) +16.5 =18.75kW <19kW (EH-CV-185)	18+8×2+18 =52kW <60kW (EH-CV-185)

The power supply unit satisfying the total of the rate output and the maximum momentary output is MDS-EH-CV-185.

Required power supply capacity (kVA) = (18.75 / 18.5) × 27 = 27.4 (kVA)

■Selection of Regenerative Resistor for Power Backup Unit (R-UNIT-6,7) and Capacitor Unit for Power Backup Unit (MDS-D/DH-CU)

When using the retraction function at power failure with MDS-D/DH-PFU, select to satisfy the stop operation for the regenerative resistor and the continuous rated output of the spindle motor for the capacitor unit.

(1) Selection of regenerative resistor for power backup unit

When using the retraction function at power failure, a resistor unit is required to make the spindle deceleration and stop after the retraction is completed.

- 1. When not using a resistor unit, control to coast the spindle motor after the retraction operation
- 2. Only the designated combination can be used for the power backup unit and the regenerative

(2) Selection of capacitor unit for power backup unit

When using the retraction function at power failure, the required number of capacitor units is decided by the continuous rated output [kW] of the spindle motor. Select according to the following specifications.

List of spindle continuous rated output and number of capacitor unit

Number of capacitor unit
1
2
3
4
5
6

SELECTION OF THE ADDITIONAL AXIS DRIVE UNIT

When selecting an additional axis drive unit to be connected to TE2 [L+,L-] (Converter voltage input terminal) of MDS-EM/ EMH-SPV3, calculate the spindle motor output and servo motor output each, and select the capacity so that the total sum should not exceed the rated capacity and the maximum momentary output of MDS-EM/EMH-SPV3.

The additional axis drive unit is spindle/servo drive unit which is operated by using the built-in power supply section of MDS-EM/EMH-SPV3.

Connectable drive units are determined by the rated capacity of MDS-EM/EMH-SPV3.

The following capacities are available.

Spindle drive unit: MDS-E-SP-20/40/80/160

: MDS-EH-SP-20/40/80

Servo drive unit : MDS-E-Vx-20/40/80

: MDS-EH-Vx-10/20/40/80

MDS-EM-SPV3-16040S

Spindle drive unit: MDS-E-SP-20/40 Servo drive unit : MDS-E-Vx-20/40

MDS-EM-SPV3-320120

Spindle drive unit: MDS-E-SP-20/40/80 Servo drive unit : MDS-E-Vx-20/40/80

■Calculation of Spindle Output

The spindle rated output and spindle maximum momentary rated output are calculated.

(1) Calculation of spindle rated output

The spindle rated output is calculated according to the following procedure.

(a) Spindle motor rated output

The spindle motor rated output is calculated from the following expression.

Spindle motor rated output =

MAX (continuous rated output, short-time rated output × short-time rated output coefficient α, %ED rated output \times %ED rated output coefficient β)

(Note 1) For the spindle motor rated output, use the maximum value of "continuous rated output", "short-time rated output \times short-time rated output coefficient α ", and "%ED rated output \times %ED rated output coefficient \(\beta''. \)

(Note 2) Select the maximum value for the spindle motor with multiple %ED rated output characteristics.

For the spindle short-time rated output coefficient α , use the value in the following table.

List of short-time rated output time and short-time rated output coefficient

Short-time rated output time	Short-time rated output coefficient α	Short-time rated output time	Short-time rated output coefficient α
1 minute	0.2	5 minutes	0.7
2 minutes	0.4	6 to 7 minutes	0.8
3 minutes	0.5	8 to 9 minutes	0.9
4 minutes	0.6	10 minutes or more	1.0

(Note 1) Select the set time for the short-time rated output of your spindle motor from the list. E.g.) When the set time for the short-time rated output is "1/12h", it means "5 minutes".

(Note 2) For the motor with coil changeover specification, select the set time for the short-time rated output of the high-speed coil.

For the %ED rated output coefficient β , use the value in the following table.

List of %ED rated output time and %ED rated output coefficient

%ED rated output time	%ED rated output coefficient β
More than or equal to 10% but less than 20%	0.7
More than or equal to 20% but less than 30%	0.9
More than or equal to 30%	1.0

SELECTION

(b) Spindle rated output

The spindle rated output is calculated from the following expression.

Spindle rated output=

(Spindle motor rated output × motor output coefficient γ of the multi-hybrid drive unit) + (Spindle motor rated output x motor output coefficient y of the additional axis (spindle) drive unit)

For the spindle motor rated output of the above expression, use the value calculated in (a). For the motor output coefficient of the combined spindle drive unit, use the value corresponding to the used spindle drive unit in the following table.

Motor output coefficient list of multi-hybrid drive unit

< MDS-EM Series >

Spindle motor	Multi-hybrid drive unit MDS-EM-SPV3-						
rated output	10040/10080	16040/16040S/16080	20080/200120	320120			
to 1.5kW	1.30	-	-	-			
to 2.2kW	1.20	1.30	=	-			
to 3.7kW	1.10	1.20	=	-			
to 5.5kW	1.10	1.10	1.20	-			
to 7.5kW	1.10	1.00	1.15	-			
to 11.0kW	-	1.00	1.05	1.15			
to 15.0kW	-	-	1.00	1.10			
to 18.5kW	-	_	1.00	1.05			
to 22.0kW	-	-	-	1.00			
to 26.0kW	-	-	-	1.00			
to 30.0kW	_	_	_	1.00			

< MDS-EMH Series >

Spindle motor	Multi-hybrid drive unit MDS-EMH-SPV3-			
rated output	8040	10040/10060		
to 2.2kW	1.30	-		
to 3.7kW	1.20	-		
to 5.5kW	1.10	1.20		
to 7.5kW	1.00	1.15		
to 11.0kW	1.00	1.05		
to 15.0kW	-	1.00		
to 18.5kW	-	1.00		

Motor output coefficient list of additional axis (spindle) drive unit

< MDS-E Series >

Spindle motor	Additional axis (spindle) drive unit MDS-E-SP-				
rated output	20	40	80	160	
to 1.5kW	1.00	1.15	1.25	-	
to 2.2kW	_	1.00	1.15	1.30	
to 3.7kW	_	1.00	1.05	1.20	
to 5.5kW	_	_	1.00	1.10	
to 7.5kW	_	_	-	1.00	

< MDS-EH Series >

Spindle motor	Additional axis (spindle) drive unit MDS-EH-SP-			
rated output	20	40	80	
to 1.5kW	1.00	1.15	1.25	
to 2.2kW	-	1.00	1.15	
to 3.7kW	-	1.00	1.05	
to 5.5kW	-	_	1.00	
to 7.5kW	-	-	1.00	

POINT

- [1] When the spindle motor applies to the wide range constant output specification or the high-torque specification, the spindle rated output may become large.
- [2] The spindle rated output is calculated from the motor output coefficient of the spindle drive unit used in combination with the spindle motor.

(2) Calculation of spindle maximum momentary output

The spindle maximum momentary output is calculated from the following expression.

Spindle maximum momentary output =MAX (short-time rated output × 1.2, output at acceleration/deceleration × 1.2, %ED rated output×1.2)

(Note) For the spindle rated output, use the largest one among "short-time rated output \times 1.2", "output at acceleration/ deceleration × 1.2" and "%ED rated output×1.2".

■Calculation of Servo Motor Output

(1) Selection with rated output

(2) Selection with maximum momentary output

For the rated output and maximum momentary output of the servo motor, use the value corresponding to the servo motor in the following table.

Data for servo motor output selection

< 200V series >

Motor HG	96
Rated output (kW)	0.75
Maximum momentary output (kW)	3.2

Motor HG	75	105	54	104	154	224	204	354
Rated output (kW)	0.75	1.0	0.5	1.0	1.5	2.2	2.0	3.5
Maximum momentary output (kW)	2.2	3.5	2.3	5.0	9.0	12.3	8.0	15.0
Motor HG	123	223	303	453	702	142	302	
Rated output (kW)	1.2	2.2	3.0	4.5	7.0	1.4	3.0	
Maximum momentary output (kW)	3.2	6.3	12.0	16.5	21.2	3.2	6.3	

< 400V series >

Motor HG-H	54	104	154	204	354	453
Rated output (kW)	0.5	1.0	1.5	2.0	3.5	4.5
Maximum momentary output (kW)	2.3	5.0	9.0	8.0	18.0	22.0

(Note) The maximum momentary output in this table is reference data for selecting the additional axis drive unit connecting to MDS-EM/EMH-SPV3 and is not data which guarantees the maximum output.

■Selection of the Additional Axis Drive Unit

Select the additional axis drive unit so that the total sum of the rated output and the maximum momentary output of spindle motor / servo motor is less than the rated capacity and maximum momentary rated capacity of MDS-EM/EMH-SPV3.

(1) Calculation of required rated output

MDS-EM/EMH-SPV3 rated capacity $> \Sigma$ (Spindle rated output) + 0.3 Σ (Servo motor rated output)

(Note) Calculate the spindle and servo motor rated output including not only the motor connected to the additional axis drive unit but also those connected to MDS-EM/EMH-SPV3.

Substitute the output calculated from (1) of "Calculation of spindle output" and (1) of "Calculation of servo motor output" to the above expression, and calculate the total sum of the spindle rated output and servo motor rated output. According to this, select the unit so that the rated capacity of MDS-EM/EMH-SPV3 is less than the values in the following table.

(2) Calculation of required maximum momentary output

Maximum momentary rated capacity of MDS-EM/EMH-SPV3 ≥

 Σ (Spindle maximum momentary output) + Σ (Maximum momentary output of servo motor accelerating/ decelerating simultaneously)

(Note) Calculate the spindle and servo motor maximum momentary output including not only the motor connected to the additional axis drive unit but also those connected to MDS-EM/EMH-SPV3.

Substitute the output calculated from (2) of "Calculation of spindle output" and (2) of "Calculation of servo motor output" to the above expression, and calculate the total sum of the "spindle maximum momentary output" and "output of servo motor accelerating/decelerating simultaneously". According to this, select the unit so that the maximum momentary rated capacity of MDS-EM/EMH-SPV3 is less than the values in the following table.

Power supply unit rated capacity and maximum momentary rated capacity

< MDS-EM Series >

Unit	MDS-EM-SPV3-	16040S	10040/10080/16040/16080/20080/200120	320120
Rated capacity (kW)		15	20	37
Maximum momentary rated capacity (kW)		42	70	101

< MDS-EMH Series >

Unit	MDS-EMH-SPV3-	8040/10040/10060
Rated c	capacity (kW)	22
	entary rated capacity (kW)	76

When reducing the time constant replacing the conventional motor with the HG or HG-H Series motor, the motor maximum momentary output may increase more than the conventional motor. Therefore, make sure to check the selection with maximum momentary rated capacity.

■Required Capacity of Power Supply

For the power supply capacity, calculate the required spindle rated output and servo motor rated output each, and select the power supply capacity satisfying them.

(1) Spindle rated output required for power supply

The spindle rated output required for power supply is calculated from the following expression.

Spindle rated output required for power supply =

MAX (Spindle motor continuous rated output, Spindle motor output at accelerating/decelerating, Spindle motor short-time output)× motor output coefficient γ of combined spindle drive unit

(Note) For the spindle rated output required for the power supply, multiply the largest one of "spindle motor continuous rated output", "spindle motor output at acceleration/deceleration" and "spindle motor shorttime output" by the motor output coefficient γ of the combined spindle drive unit.

For the motor output coefficient of the combined spindle drive unit, use the value corresponding to the used spindle drive unit "Motor output coefficient list of additional axis (spindle) drive unit" on (1)-(b) of "Calculation of spindle output"

(2) Servo motor rated output required for power supply

For the servo motor rated output required for power supply, use the value calculated in (1) of "Calculation of servo motor output"

(3) Calculation of rated output required for power supply

Rated capacity required for power supply =

 Σ (Spindle rated output required for power supply) + 0.3 Σ (servo motor rated output required for

Substitute the output calculated from the item (1) and (2) to the above expression, and calculate the rated capacity required for the power supply.

(4) Calculation of required power supply

Power supply capacity (kVA) = {(Required rated capacity calculated in the item (3)(kW) / Rated capacity of MDS-EM/EMH-SPV3) × Power supply capacity base value of MDS-EM/EMH-SPV3}

The power supply capacity base value of MDS-EM/EMH-SPV3 is as the following table.

< MDS-EM Series >

Unit	MDS-EM-SPV3-	16040S	10040/10080/16040/ 16080/20080/200120	320120		
Power supply capacity base value (kVA)		21	29	54		
< MDS-EMH	< MDS-EMH Series >					
Unit	MDS-EMH-SPV3-	8040/10040/10060				
Power supply capacity base value (kVA)		32				

SELECTION

■Example for Additional Axis Drive Unit and Power Supply Facility Capacity

< MDS-EM Series >

(Example 1)

Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X-axis	HG204		2.0kW	8.0kW
Y-axis	HG204	MDS-EM-SPV3-200120	2.0kW	8.0kW
Z-axis	HG354		3.5kW	15kW
MG-axis	HG104	MDS-E-V1-40 (Additional axis)	1.0kW	5.0kW
Spindle	Spindle motor 15kW	MDS-EM-SPV3-200120	15kW	18kW
	Total		0.3× (2.0+2.0+3.5+1.0) +15 =17.55kW <20kW (EM-SPV3)	(8.0+8.0+15+5.0) +18 =54kW <70kW (EM-SPV3)

Required power supply capacity (kVA) = (17.55/20) × 29 = 25.5 (kVA)

(Example 2)

Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X-axis	HG104		1.0kW	5.0kW
Y-axis	HG104	MDS-EM-SPV3-10040	1.0kW	5.0kW
Z-axis	HG104		1.0kW	5.0kW
A-axis	HG75	MD0 5 M0 00	0.75kW	2.2kW
B-axis	HG75	MDS-E-V3-20 (Additional axis)	0.75kW	2.2kW
C-axis	HG75	(Additional axis)	0.75kW	2.2kW
Spindle (1)	Spindle motor 7.5kW	MDS-EM-SPV3-10040	7.5kW	9.0kW
Spindle (2)	Spindle motor 3.7kW	MDS-E-SP-80	3.7kW	4.44kW
Spindle (3) Spindle motor 3.7kW (Additional axis)		3.7kW	4.44kW	
			0.3× (1.0×3+0.75×3) +	(5.0×3+2.2×3) +
	Total		(7.5+3.7+3.7) =16.5kW	(9.0+4.44+4.44) =39.5kW
			<20kW (EM-SPV3)	<70kW (EM-SPV3)

Required power supply capacity (kVA) = $(16.5/20) \times 29 = 24.0$ (kVA)

< MDS-EMH Series >

(Example 1)

Axis name	Motor	Drive unit	Rated output	Maximum momentary output
X-axis	HG-H204		2.0kW	8.0kW
Y-axis	HG-H204	MDS-EMH-SPV3-10060	2.0kW	8.0kW
Z-axis	HG-H354		3.5kW	15kW
MG-axis	HG-H104	MDS-EH-V1-20 (Additional axis)	1.0kW	5.0kW
Spindle	Spindle motor 15kW	MDS-EMH-SPV3-10060	15kW	18kW
	Total		0.3× (2.0+2.0+3.5+1.0) +15 =17.55kW <22kW (EMH-SPV3)	(8.0+8.0+15+5.0) +18 =54kW <76kW (EMH-SPV3)

Required power supply capacity (kVA) = (17.55/22) × 32 = 25.5(kVA)

SERVO OPTIONS

Battery options are required depending on the type of machine end encoder in the full closed loop control system. Check the options to be required referring the following lists.

■System establishment in the full closed loop control

Full closed loop control for linear axis

Machine side encoder to be used		oder to be used	Encoder signal output	Drive unit input signal	Battery option	Remarks
	Rectangular wave signal	SR74, SR84 (MAGNESCALE)	Rectangular wave signal	Rectangular wave signal	-	
	output	Various scale	Rectangular wave signal	Rectangular wave signal	-	
		LS187, LS487		Rectangular wave signal		
		(HEIDENHAIN)	SIN wave signal	Rectangular wave signal	-	
		(TEIDERT IN CITY)		Rectangular wave signal	-	
Incremental encoder	SIN wave signal output	LS187C, LS487C (HEIDENHAIN)	SIN wave signal	Mitsubishi serial signal	(Required) (Note 1)	Distance-coded reference scale (Note 2)
		Various scale	SIN wave signal	Mitsubishi serial signal	(Required) (Note 1)	Distance-coded reference scale is also available (Note 2)
	Mitsubishi serial signal output	SR75, SR85 (MAGNESCALE)	Mitsubishi serial signal	Mitsubishi serial signal	-	
		OSA405ET2AS, OSA676ET2AS (MITSUBISHI ELECTRIC)	Mitsubishi serial signal	Mitsubishi serial signal	Required	Ball screw side encoder
		SR27, SR77, SR87, SR67A (MAGNESCALE)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	
		LIC2197M, LIC2199M (HEIDENHAIN)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	Mitsu03-4
		MC15M (HEIDENHAIN)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	Mitsu03-4
Absolute	Mitsubishi	LC195M, LC495M,LC291M (HEIDENHAIN)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	Mitsu03-4
position encoder	serial signal output	AT343, AT543, AT545, ST748, AT1143 (Mitutoyo)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	
		SAM Series, SVAM Series, GAM Series, LAM Series (FAGOR)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	
		RL40N Series (Renishaw)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	
		AMS-ABS-3B Series (Schneeberger)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	
		LMFA Series, LMBA Series (AMO)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	

Full closed loop control for rotary axis

Machine side encoder to be used		Encoder signal output	Output signal	Battery option	Remarks	
	Rectangular wave signal output	Various scale	Rectangular wave signal	Rectangular wave signal	-	
			SIN wave signal	Mitsubishi serial signal	_	
Incremental encoder	SIN wave signal	ERM280 Series (HEIDENHAIN)	SIN wave signal	Mitsubishi serial signal	(Required) (Note 1)	Distance-coded reference scale is also available (Note 2)
	output	Various scale	SIN wave signal	Mitsubishi serial signal	(Required) (Note 1)	Distance-coded reference scale is also available (Note 2)
	Mitsubishi serial	RU77, RS87 (MAGNESCALE)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	
		RCN2590M, RCN5390M, RCN5590M, RCN8390M (HEIDENHAIN)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	Mitsu03-4
		ROC425M, ROC2390M ECA4000 Series (HEIDENHAIN)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	Mitsu03-4
Absolute position	signal output	RA Series (Renishaw)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	
encoder		HAM Series (FAGOR)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	
encoder		WMFA Series WMBA Series WMRA Series (AMO)	Mitsubishi serial signal	Mitsubishi serial signal	Not required	
	SIN wave signal output	MPRZ Series (Mitsubishi Heavy Industries Machine Tool) ce-coded reference scale it	SIN wave signal	Mitsubishi serial signal	Not required	

(Note 1) When using the distance-coded reference scale, it is recommended to use with distance-coded reference check function. In this case, the battery option is required.(Note 2) Use the option of M800 Series for the distance-coded reference scale. It cannot be used with the speed command synchronous control.

(Note 3) Connectable scales besides these are also marketed. Contact each scale manufacturer for details. For the specifications of the scale, including the scales shown in this manual, refer to the manuals issued by the manufacturer.

■System establishment in the synchronous control

Position command synchronous control

The synchronous control is all executed in the NC, and the each servo is controlled as an independent axis.

Therefore, preparing special options for the synchronous control is not required on the servo side.

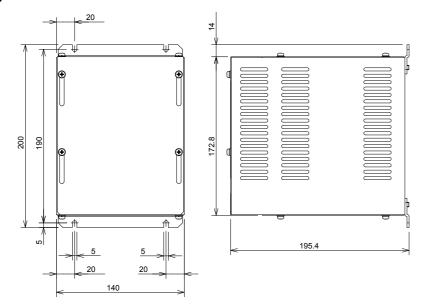
Speed command synchronization control

The common position control in two axes is performed by one linear scale. Basically, the multi axis integrated type drive unit (MDS-E/EH-V2/V3) is used, and the feedback signal is divided for two axes inside the drive unit.

When the two 1-axis type drive units are used in driving the large capacity servo motor, the linear scale feedback signal must be divided outside.

<Required option in the speed command synchronous control>

Machine side encoder to be used	For MDS-E/EH-V2/V3	For MDS-E/EH-V1×2 units	Remarks
SIN wave signal output scale	MDS-EX-HR-11	Not possible	
Silv wave signal output scale	(Serial conversion)	Not possible	
			Including the case that an interface unit
Mitsubishi serial signal output scale	Direct connection	MDS-B-SD (Signal division)	of the scale manufacturer is used with
			SIN wave output scale.


(Note) The distance-coded reference scale speed command synchronous control and the rectangular wave signal output scale speed command synchronous control are not available.

■Dynamic brake unit (MDS-D-DBU)

Specifications

Туре	MDS-D-DBU
Coil specifications	DC24V 160mA
Wire size	5.5mm² or more (For IV wire)
Compatible drive unit	MDS-E-V1-320W, MDS-EH-V1-160W or larger
Mass	3kg

Outline dimension drawing MDS-D-DBU

[Unit:mm]

■Battery option

This battery option may be required to establish absolute position system. Select a battery option from the table below depending on the servo system.

Ту	ре	MDS-BAT6V1SET	MR-BAT6V1SET	MDSBTBOX-LR2060
Installation type	tion type Drive unit installation		Drive unit installation	Control panel installation
Hazard Class		Not applicable	Not applicable	Not applicable
Number of connectable ax	ces	Up to 3 axes	Up to 3 axes	Up to 8 axes
Change metho	d	Battery option change	Battery option change	Battery change
Appearance			- Built-in battery MR-BAT6V1 - Name plate 2CR1735SA WK:7 11-04 6V 1650mAh Date of main, disclure	
Compatible	E/EH	0	-	0
model	EM/EMH	0	0	0
IIIouei	EJ/EJH	-	0	0

■Cell battery (MDS-BAT6V1SET)

Specifications

Pottory	, antion type	Cell battery		
Battery option type		MDS-BAT6V1SET		
Battery model name		2CR17335A		
Nominal voltage		6V		
Number of connectable axes (Note 1)		Up to 3 axes		
Battery continuous backup time		Up to 2 axes: Approx. 10,000 hours		
Dattery Continuous Dac	kup iiiie	3 axes connected: Approx. 6,600 hours		
Back up time from batte	ery warning to alarm	Up to 2 axes: Approx. 100 hours		
occurrence (Note 2)		3 axes connected: Approx. 60 hours		
	E/EH	0		
Compatible model	EM/EMH	0		
	EJ/EJH	-		

(Note 1) When using ball screw side encoder, both ball screw side encoder and motor side encoder need to be backed up by a battery, so the load becomes double.

(Note 2) This time is a guideline, so does not guarantee the back up time. Replace the battery with a new battery as soon as a battery warning occurs.

(Note 3) A battery load is generated in the axis for which the incremental control is set when a battery is connected.

■Cell battery (MR-BAT6V1SET)

Specifications

Battery option type		Cell battery	
		MR-BAT6V1SET	
Battery model name		2CR17335A	
Nominal voltage		6V	
Number of connectable axes (Note 1)		Up to 3 axes	
Battery continuous backup time		Up to 2 axes: Approx. 10,000 hours	
Dattery Continuous Dat	ckup time	3 axes connected: Approx. 6,600 hours	
Back up time from batt	tery warning to alarm	Up to 2 axes: Approx. 100 hours	
occurrence (Note 2)		3 axes connected: Approx. 60 hours	
	E/EH	-	
Compatible model	EM/EMH	0	
	EJ/EJH	0	

(Note 1) When using ball screw side encoder, both ball screw side encoder and motor side encoder need to be backed up by a battery, so load becomes double.

(Note 2) This time is a guideline, so does not guarantee the back up time. Replace the battery with a new battery as soon as a battery alarm occurs.

(Note 3) A battery load is generated in the axis for which the incremental control is set when a battery is connected.

13

■Battery box (MDSBTBOX-LR2060)

Specifications

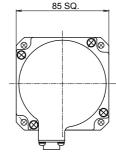
Pattery of	ntion type	Battery box			
Battery option type		MDSBTBOX-LR2060			
Battery model name (Note	e 1)	Size-D alkaline batteries LR20×4 pieces			
Naminal valtage (Note 2)		6.0V (Unit output: BTO1/2/3)			
Nominal voltage (Note 2)		3.6V (Unit output: BT(3.6V)			
Number of connectable axes (Note 3)		8 axes			
Battery continuous backu	p time (Note 4)	Approx. 10000 hours (when 8 axes are connected, cumulative time in non-energized state)			
Back up time from battery	warning to alarm	Approx. 336 hours (when 8 axes are connected)			
occurrence (Note 4)		Approx. 336 hours (when a axes are connected)			
E/EH		0			
Compatible model	EM/EMH	0			
	EJ/EJH	0			

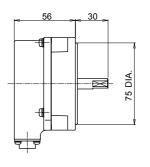
- (Note 1) Install commercially-available alkaline dry batteries into MDSBTBOX-LR2060. The batteries should be procured by customers. Make sure to use new batteries that have not passed the expiration date. We recommend you to replace the batteries in the one-year cycle.

 (Note 2) 3.6V output is for old-type drive unit. It is not used for MDS-E/EH, EM/EMH, and EJ/EJH Series.
- (Note 3) When using ball screw side encoder, both ball screw side encoder and motor side encoder need to be backed up by a battery, so the load
- (Note 4) This time is a guideline, so does not guarantee the back up time. Replace the battery with a new battery as soon as a battery warning (9F)
- (Note 5) A battery load is generated in the axis for which the incremental control is set when a battery is connected.

■Ball screw side encoder OSA405ET2AS, OSA676ET2AS

Specifications


	Туре	OSA405ET2AS	OSA676ET2AS		
	Encoder resolution	4,194,304pulse/rev	67,108,864pulse/rev		
	Detection method	Absolute position method (battery backup method)			
Electrical	Accuracy (*1)	±3 sec	onds		
characteristics	Tolerable rotation speed at power off (*2)	500r/	min min		
	Encoder output data	Serial	data		
	Power consumption 0.3A				
	Inertia	0.5×10 ⁻⁴ kgm² or less			
Mechanical	Shaft friction torque	0.1Nm or less			
characteristics for rotation	Shaft angle acceleration	Shaft angle acceleration 4×10 ⁴ rad/s ² or less			
rotation	Tolerable continuous rotation speed		4000r/min		
	Shaft amplitude (position 15mm from end)	0.02mm or less			
Mechanical	Tolerable load (thrust direction/radial direction)	9.8N/19.6N			
configuration	Mass	0.6	kg		
comiguration	Degree of protection	IP67 (The shaft-through	n portion is excluded.)		
	Recommended coupling	Bellows coupling			
	E/EH	0	0		
Compatible model	EM/EMH	0	-		
	EJ/EJH	0	-		


(*1) The values above are typical values after the calibration with our shipping test device and are not guaranteed.

(*2) If the tolerable rotation speed at power off is exceeded, the absolute position cannot be repaired.

Outline dimension drawing

OSA405ET2AS/OSA676ET2AS

[Unit:mm]

SPINDLE OPTIONS

According to the spindle control to be adopted, select the spindle side encoder based on the following table.

No-variable speed control (When spindle and motor are directly coupled or coupled with a 1:1 gear ratio)

Control possible x: Control not possible

Spindle control item	Control specifications	Without spindle side encoder	With spindle side encoder
	Normal cutting control	•	
Spindle control	Constant surface speed control		
opinale control	(lathe)	Ÿ	
	Thread cutting (lathe)	•	
	1-point orientation control	•	
Orientation control	Multi-point orientation control	•	This normally is not used for novariable speed
	Orientation indexing	•	control.
	Standard synchronous tap	•	
Synchronous tap control	Synchronous tap after zero point		
	return	•	
Spindle synchronous	Without phase alignment function	•	
control	With phase alignment function	•	
C-axis control	C-axis control	● (Note)	•

(Note) When spindle and motor are coupled with a 1:1 gear ratio, use of a spindle side encoder is recommended to assure the precision.

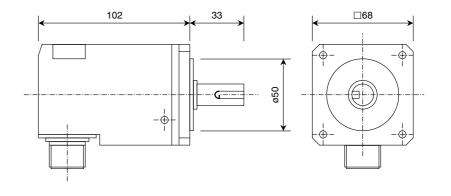
Variable speed control (When using V-belt, or when spindle and motor are connected with a gear ratio other than 1:1)

		With and and all all a		With spindle side encoder	r
Spindle control item	Control specifications	Without spindle side encoder	TS5690/ERM280/ GEL2449M	OSE-1024	Proximity switch
	Normal cutting control	•	•	•	•
Spindle control	Constant surface speed control (lathe)	● (Note 1)	•	•	● (Note 1)
	Thread cutting (lathe)	×	•	•	×
	1-point orientation control	×	•	•	● (Note 3)
Orientation control	Multi-point orientation control	×	•	•	×
	Orientation indexing	×	•	•	×
	Standard synchronous tap	● (Note 2)	•	•	● (Note 2)
Synchronous tap control	Synchronous tap after zero point return	×	•	•	×
Spindle synchronous	Without phase alignment function	● (Note 1)	•	•	● (Note 1)
control	With phase alignment function	×	•	•	×
C-axis control	C-axis control	×	•	×	×

(Note 1) Control not possible when connected with the V-belt.
(Note 2) Control not possible when connected with other than the gears.
(Note 3) When using a proximity switch, an orientation is executed after the spindle is stopped.
As for 2-axis spindle drive unit, setting is available only for one of the axes.

■Spindle side ABZ pulse output encoder (OSE-1024 Series)

When a spindle and motor are connected with a V-belt, or connected with a gear ratio other than 1:1, use this spindle side encoder to detect the position and speed of the spindle. Also use this encoder when orientation control and synchronous tap control, etc are executed under the above conditions.


Specifications

	Туре	OSE-1024-3-15-68	OSE-1024-3-15-68-8		
Mechanical	Inertia	0.1×10 ⁻⁴ kgm ² or less	0.1×10 ⁻⁴ kgm ² or less		
characteristics for	Shaft friction torque	0.98Nm or less	0.98Nm or less		
rotation	Shaft angle acceleration	10 ⁴ rad/s ² or less	10 ⁴ rad/s ² or less		
Totation	Tolerable continuous rotation speed	6000r/min	8000r/min		
	Bearing maximum non-lubrication time	20000h/6000r/min	20000h/8000r/min		
	Shaft amplitude (position 15mm from end)	0.02mm or less	0.02mm or less		
Mechanical configuration	Tolerable load (thrust direction/radial direction)	10kg/20kg Half of value during operation	10kg/20kg Half of value during operation		
	Mass	1.5kg	1.5kg		
	Degree of protection	IP.	54		
	Squareness of flange to shaft	0.05mm	n or less		
	Flange matching eccentricity	0.05mm	n or less		
	E/EH	0	0		
Compatible model	EM/EMH	0	0		
	EJ/EJH	0	0		

(Note1) Confirm that the gear ratio (pulley ratio) of the spindle end to the encoder is 1:1.

(Note2) Use a timing belt when connecting by a belt.

Outline dimension drawing

[Unit:mm]

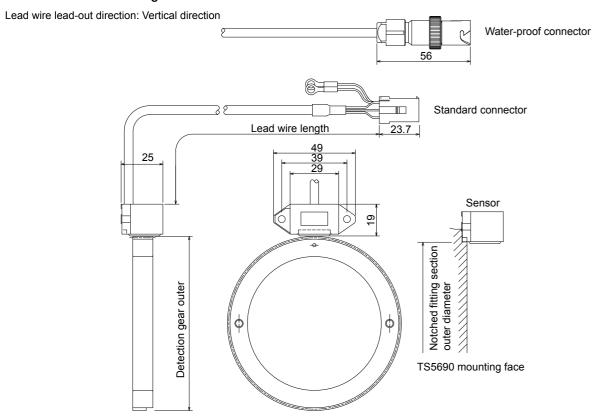
Spindle side encoder (OSE-1024-3-15-68, OSE-1024-3-15-68-8)

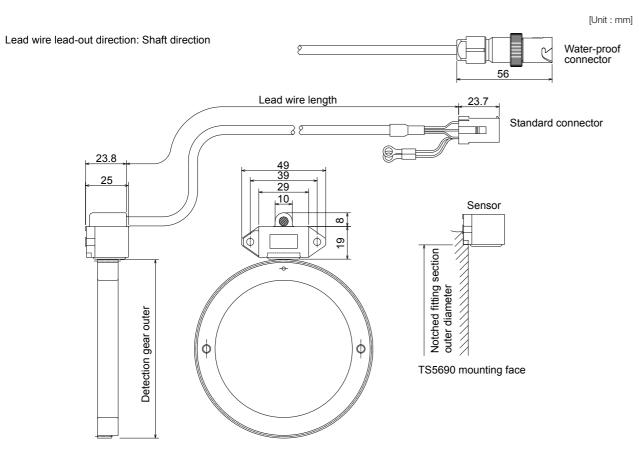
■Spindle side PLG serial output encoder (TS5690, MU1606 Series)

This encoder is used when a more accurate synchronous tapping control or C-axis control than OSE encoder is performed to the spindle which is not directly-connected to the spindle motor.

Specifications

	Serie	es type					TS5690	N64xx				
	xx (The	Standard connector	12	22	32	42	52	17	27	37	47	57
Sensor	type name)	Water-proof connector	19	29	39	49	59	18	28	38	48	58
	Length of lea		400±10	800±20	1200±20	1600±30	2000±30	400±10	800±20	1200±20	1600±30	2000±30
	Lead wire lea	ad-out direction		V	ertical direction	n				Shaft direction	1	
	Туре			MU1606N601								
Detection	The number	of teeth					6	4				
gear	Outer diame	eter [mm]					ø5	2.8				
yeai	Inner diame	ter [mm]		ø40H5								
	Thickness	[mm]					1					
Notched	Outer diame	eter [mm]					ø5	9.4				
fitting section	Outer diame tolerance	eter [mm]	-0.070 to -0.030									
The number of output	A/B phase						6	4				
pulse	Z phase			1								
Detection re		[p/rev]					2 mi					
Absolute ac	ccuracy at stop	р					15	0"				
Tolerable sp		[r/min]					40,0					
Signal outp				Mitsubishi high-speed serial								
Compatible	E/EH											
model	EM/EMH											
model	EJ/EJH											


	Serie	es type					TS5690	N90xx					
	xx (The	Standard connector	12	22	32	42	52	17	27	37	47	57	
Sensor	type name)	Water-proof connector	19	29	39	49	59	18	28	38	48	58	
	Length of lea	ad [mm]	400±10	800±20	1200±20	1600±30	2000±30	400±10	800±20	1200±20	1600±30	2000±30	
	Lead wire lea	ad-out direction		Vertical direction Shaft di							า		
	Туре			MU1606N906									
Detection	The number of teeth						9	0					
gear	Outer diame	eter [mm]					ø7:	3.6					
gear	Inner diame	ter [mm]		ø60H5									
	Thickness	[mm]					1	2					
Notched	Outer diame	eter [mm]					ø7:	9.2					
fitting section	Outer diame tolerance	eter [mm]	-0.040 to 0										
The number of output	A/B phase			90									
pulse	Z phase			1									
Detection re	esolution	[p/rev]		2,880,000									
	curacy at sto						10	15"					
Tolerable sp	peed	[r/min]					30,						
Signal outp	Signal output			Mitsubishi high-speed serial									
Compatible	E/EH												
model	EM/EMH			0									
model	EJ/EJH)					


	Serie	es type					TS5690	N12xx				
	xx (The end of the	Standard connector	12	22	32	42	52	17	27	37	47	57
Sensor	type name)	Water-proof connector	19	29	39	49	59	18	28	38	48	58
	Length of lea		400±10	800±20	1200±20	1600±30	2000±30	400±10	800±20	1200±20	1600±30	2000±30
	Lead wire lea	ad-out direction		Vertical direction Shaft direction								
	Туре						MU160	6N709				
Detection	The number of teeth						12	28				
	Outer diame	eter [mm]					ø10	04.0				
gear	Inner diame	ter [mm]		ø80H5								
	Thickness [mm]						1					
Notched	Outer diame	eter [mm]		ø108.8								
fitting section	Outer diame tolerance	eter [mm]					-0.015 to	+0.025				
The number of output	A/B phase						12	28				
pulse	Z phase						†	1				
Detection re		[p/rev]					4 mi					
	ccuracy at sto						10					
Tolerable sp		[r/min]					20,					
Signal outp	Signal output						Mitsubishi hig	h-speed seria	l			
Compatible	E/EH)				
model	EM/EMH											
model	EJ/EJH											

	Serie	es type					TS5690	N19xx				
	xx (The end of the	Standard connector	12	22	32	42	52	17	27	37	47	57
Sensor	type name)	Water-proof connector	19	29	39	49	59	18	28	38	48	58
	Length of lea	ıd [mm]	400±10	800±20	1200±20	1600±30	2000±30	400±10	800±20	1200±20	1600±30	2000±30
		ad-out direction		V	ertical direction	n				Shaft direction	1	
	Туре			MU1606N203								
Detection	The number	of teeth					19	92				
gear	Outer diameter [mm] ø155.2											
gear	Inner diameter [mm]			ø125H5								
	Thickness	[mm]					1	2				
Notched	Outer diame						ø15	9.4				
fitting section	Outer diame tolerance	ter [mm]	-0.035 to +0.005									
The number of output	A/B phase			192								
pulse	Z phase						1	<u>'</u>				
Detection re	esolution	[p/rev]					6 mi	llion				
	ccuracy at sto						97	.5"				
Tolerable sp	Tolerable speed [r/min]							000				
Signal outpu	Signal output						Mitsubishi hig	h-speed seria				
Compatible	E/EH											
model	EM/EMH											
model	EJ/EJH)				

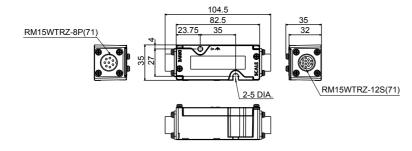
	Serie	es type					TS5690	DN25xx					
	xx (The end of the	Standard connector	12	22	32	42	52	17	27	37	47	57	
Sensor	type name)	Water-proof connector	19	29	39	49	59	18	28	38	48	58	
	Length of lea	ad [mm	400±10	800±20	1200±20	1600±30	2000±30	400±10	800±20	1200±20	1600±30	2000±30	
	Lead wire lea	ad-out direction	1	Vertical direction							n		
	Туре			MU1606N802									
Detection	The number	of teeth					2	56					
gear	Outer diame	eter [mm]	ø206.4									
goai	Inner diame	ter [mm		ø160									
	Thickness	[mm					15	5.8					
Notched	d Outer diameter [mm]						ø21	10.2					
fitting section	Outer diame tolerance	eter [mm	0.0 to +0.040										
The number of output	A/B phase			256									
pulse	Z phase							1					
Detection re	esolution	[p/rev					8 m	illion					
Absolute ac	curacy at sto	р					9	5"					
Tolerable sp	peed	[r/min	1					000					
Signal outp							Mitsubishi hig	h-speed seria	I				
Compatible	E/EH)					
model	EM/EMH)					
1110001	EJ/EJH						()					

Outline dimension drawing

■Spindle side encoder (other manufacturer's product)

ERM280 1200	ERM280 2048	GEL2449M	
HEIDENHAIN C	LENORD+BAUER		
0.0000183°	0.0000107°	0.000687°	
(19,660,800p/rev)	(33,554,432p/rev)	(524,288p/rev)	
20000 r/min	11718 r/min	Depending on the diameter of the gear	
	HEIDENHAIN (0.0000183° (19,660,800p/rev)	HEIDENHAIN CORPORATION 0.0000183° 0.0000107° (19,660,800p/rev) (33,554,432p/rev)	

ENCODER INTERFACE UNIT


■Serial output interface unit for ABZ analog encoder MDS-EX-HR

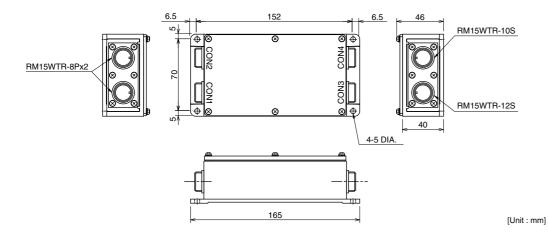
This unit superimposes the scale analog output raw waves, and generates high resolution position data. Increasing the encoder resolution is effective for the servo high-gain.

Specifications

Тур	•	MDS-EX-HR-11				
Compatible scale (examp	ole)	LS186 / LS486 / LS186C / LS486C (HEIDENHAIN)				
Consumption current		150mA				
Analog signal input speci	ifications	A -phase, B -phase, Z-phase (Amplitude 1Vp-p/Min.: 0.8Vp-p Max.: 1.2Vp-p)				
Compatible frequency		Analog raw waveform max.200kHz				
Scale resolution		Analog raw waveform / 16384 division				
Output communication style		High-speed serial communication				
Tolerable power voltage		5VDC±5%				
Maximum heating value		2W				
Mass		0.2kg				
Degree of protection		IP67				
	E/EH	0				
Compatible model	EM/EMH	0				
	EJ/EJH	0				

Outline dimension drawing

[Unit:mm]

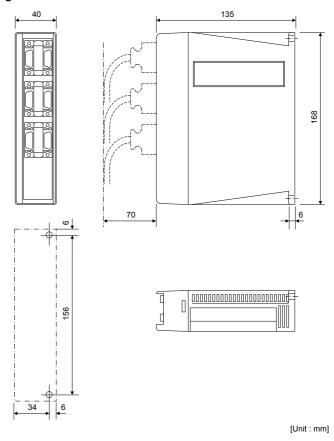

■Serial output interface unit for ABZ analog encoder MDS-B-HR

Convert the analog waves (Phase A and B) output from the relative position linear scale into the Mitsubishi-protocol serial communication (digital) signal. Add the signal from the magnetic polar detection unit to the linear scale's feedback signal.

Specifications

Туре		MDS-B-HR-11M	MDS-B-HR-11MP			
Compatible scale (examp	le)	LS186 / LS486 / LS186C / LS486C (HEIDENHAIN)				
Analog signal input specif	ications	A-phase, B-phase, Z-ph	nase (Amplitude 1Vp-p)			
Compatible frequency		Analog raw wavef	orm max. 200kHz			
Scale resolution		Analog raw wave	form/512 division			
Input/output communication	on style	High-speed serial communication I/F, RS485 or equivalent				
Magnetic pole detection		Compatible				
Tolerable power voltage		DC5V±5%				
Maximum heating value		2W				
Mass		0.5kg (or less			
Degree of protection		IP65	IP67			
Compatible model	E/EH	0	0			
Companible model	EJ/EJH	0	0			

Outline dimension drawing


■Serial signal division unit MDS-B-SD

This unit has a function to divide the position and speed signals fed back from the high-speed serial encoder and high-speed serial linear scale. This unit is used to carry out synchronized control of the motor with two MDS-E/EH-V1 drive units.

Specifications

•						
Ту	ре	MDS-B-SD				
Compatible servo drive	unit	MDS-E/EH-V1-□				
Input/output communication	ation style	High-speed serial communication I/F, RS485 or equivalent				
Tolerable power voltage	Э	DC5V±10%				
Maximum heating value	Э	4W				
Mass		0.5kg or less				
Degree of protection		IP20				
	E/EH	0				
Compatible model	EM/EMH	-				
	EJ/EJH	O				

Outline dimension drawing

■Serial output interface unit for ABZ analog encoder EIB192M (Other manufacturer's product)

Specifications

Ту	ре	EIB192M A4 20µm	EIB192M C4 1200	EIB192M C4 2048				
Manufacturer		HEIDENHAIN						
Input signal			A-phase, B-phase: SIN wave 1Vpp, Z-phase					
Maximum input frequen	icy		400kHz					
Output signal			Mitsubishi high-speed serial signal (Mitsu02-4)					
Interpolation division nu	ımber		Maximum 16384 divisions					
Compatible encoder		LS187, LS487	ERM280 1200	ERM280 2048				
Minimum detection reso	alution	0.0012µm	0.0000183°	0.0000107°				
willimum detection rest	Diulion	0.0012μπ	(19,660,800p/rev)	(33,554,432p/rev)				
Degree of protection		IP65						
Outline dimension			98mm×64mm×38.5mm					
Mass			300g					
	E/EH	0	0	0				
Compatible model	EM/EMH	0	0	0				
	EJ/EJH	0	0	0				

■Serial output interface unit for ABZ analog encoder EIB392M (Other manufacturer's product)

Specifications

Туре	1	EIB392M A4 20µm	EIB392M C4 1200	EIB392M C4 2048				
Manufacturer			HEIDENHAIN					
Input signal		A-phase, B-phase: SIN wave 1Vpp, Z-phase						
Maximum input frequency			400kHz					
Output signal		N	1itsubishi high-speed serial signal (Mitsu02-	4)				
Interpolation division num	ber		Maximum 16384 divisions					
Compatible encoder		LS187, LS487	ERM280 1200	ERM280 2048				
Minimum detection resolu	tion	0.0012um	0.0000183°	0.0000107°				
winimum detection resolu	uon	0.0012μπ	(19,660,800p/rev)	(33,554,432p/rev)				
Degree of protection		IP40						
Outline dimension		76.5mm×43mm×16.6mm						
Mass			140g					
	E/EH	0	0	0				
Compatible model	EM/EMH	0	0	0				
	EJ/EJH	Ō	Ō	Ô				

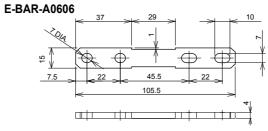
■Serial output interface unit for ABZ analog encoder ADB-K70M Series (Other manufacturer's product)

Specifications

Туре		ADB-K70M			
Manufacturer		Mitsubishi Heavy Industries Machine Tool Co., Ltd.			
Maximum response speed		10,000r/min			
Output signal		Mitsubishi high-speed serial signal			
Compatible encoder		MPRZ series			
Minimum detection resolut	ion	0.000043°			
Williman detection resolut	HOTT	(8,388,608p/rev)			
Degree of protection		IP20			
Outline dimension		120mm×50mm			
Mass		0.15kg			
	E/EH	0			
Compatible model	EM/EMH	0			
	EJ/EJH	0			

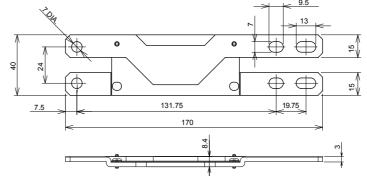
DRIVE UNIT OPTION

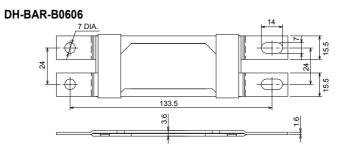
■DC connection bar

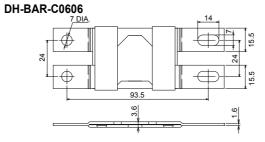

When connecting a large capacity drive unit with L+L- terminal of power supply unit, DC connection bar is required. In use of the following large capacity drive units, use a dedicated DC connection bar. The DC connection bar to be used depends on the connected power supply, so make a selection according to the following table.

Specifications

	Series	MD	S-E		MDS-EH	
Large capacity dr	rive unit	MDS-E-SP-400 MDS-E-SP-640	MDS-E-SP-400 MDS-E-SP-640	MDS-EH-SP-200 MDS-EH-SP-320 MDS-EH-SP-480 MDS-EH-SP-600	MDS-EH-V1-200 MDS-EH-SP-200 MDS-EH-SP-320	MDS-EH-V1-200
Power supply uni	it	MDS-E-CV-300 MDS-E-CV-370 MDS-E-CV-450	MDS-E-CV-550	MDS-EH-CV-550 MDS-EH-CV-750 MDS-EX-CVP-1100H	MDS-E-CV-300 MDS-E-CV-370 MDS-E-CV-450	MDS-EH-CV-185
Required connec	tion bar	E-BAR-B0606	E-BAR-A0606 (Two-parts set)	E-BAR-A0606 (Two-parts set)	DH-BAR-B0606	DH-BAR-C0606
O Alle I -	E/EH	0	0	0	0	0
Compatible model	EM/EMH	-	-	-	-	-
IIIodei	EJ/EJH	-	-	-	-	-


Outline dimension drawings


[Unit:mm]



(Note) E-BAR-A0606 is a set of two DC connection bars.

E-BAR-B0606

■Side protection cover (E-COVER-1/E-COVER-2)

Install the side protection cover outside the both ends of the connected units.

■Regenerative option

Confirm the regeneration resistor capacity and possibility of connecting with the drive unit.

The regenerative resistor generates heats, so wire and install the unit while taking care to safety. When using the regenerative resistor, make sure that flammable matters, such as cables, do not contact the resistor, and provide a cover on the machine so that dust or oil does not accumulate on the resistor and ignite.

Combination with servo drive unit

Corresponding	Standard built-in		External option regenerative resistor						
servo drive unit	regenerative r		MR-RB032	MR-RB12	MR-RB32	MR-RB30	MR-RB50	MR-RB31	MR-RB51
	Mass		0.5kg	1.1kg	2.9kg	2.9kg	5.6kg	2.9kg	5.6kg
			168mm×	168mm×	150mm×	150mm×	350mm×	150mm×	350mm×
	Unit outline din	aanaian	30mm×	40mm×	100mm×	100mm×	128mm×	100mm×	128mm×
	Offic outline uni	HEHSIOH	119mm	149mm	318mm	318mm	200mm	318mm	200mm
			W1	W2	W3	W3	W4	W3	W4
	External option regenerative resistor		-	GZG200W 39OHMK	GZG200W120 OHMK ×3	GZG200W39 OHMK ×3	GZG300W39 OHMK ×3	GZG200W20 OHMK ×3	GZG300W20 OHMK ×3
			30W	100W	300W	300W	500W	300W	500W
	Regenerative capacity	Resistance value	40Ω	40Ω	40Ω	13Ω	13Ω	6.7Ω	6.7Ω
MDS-EJ-V1-10	10W	100Ω	0	0					
MDS-EJ-V1-15	10W	100Ω	0	0					
MDS-EJ-V1-30	20W	40Ω	0	0	0				
MDS-EJ-V1-40	100W	13Ω				0	0		
MDS-EJ-V1-80	100W	9Ω				0	0	0	0
MDS-EJ-V1-100	100W	9Ω				0	0	0	0
MDS-EJ-V2-30	100W	9Ω				0	0		
MDS-EJ-V2-40	150W	6.7Ω				0	0	0	0

0			External option regenerative resistor								
Corresponding servo drive unit		Standard built-in regenerative resistor		FCUA-RB37	FCUA-RB55	FCUA-RB75/2	FCUA-RB55 2 units connected in parallel	FCUA-RB75/2 2 units connected in parallel	R-UNIT	R-UNIT2	
	Mass		0.8kg	1.2kg	2.2kg	2.2kg	4.4kg	4.4kg	4.3kg	4.4kg	
			30mm×	30mm×	40mm×	40mm×	40mm×	40mm×	355mm×	355mm×	
	Linit outling din	Unit outline dimension		60mm×	80mm×	80mm×	80mm×	80mm×	105mm×	105mm×	
	Offic outline differsion		215mm	335mm	400mm	400mm	400mm	400mm	114mm	114mm	
			W5	W5	W6	W6	W6	W6	W7	W7	
	D	Regenerative capacity Resistance value		185W	340W	340W	680W	680W	700W	700W	
				25Ω	20Ω	30Ω	10Ω	15Ω	30Ω	15Ω	
MDS-EJ-V1-10	10W	100Ω									
MDS-EJ-V1-15	10W	100Ω									
MDS-EJ-V1-30	20W	40Ω	0								
MDS-EJ-V1-40	100W	13Ω		0	0	0		0		0	
MDS-EJ-V1-80	100W	9Ω									
MDS-EJ-V1-100	100W 9Ω										
MDS-EJ-V2-30	100W	9Ω		0	0						
MDS-EJ-V2-40	150W	6.7Ω					0	0		0	

Corresponding	Standard built-in regenerative resistor		External option regenerative resistor						
servo drive unit			MR-RB1H-4	MR-RB3M-4	MR-RB3G-4	MR-RB5G-4 (Note 1)			
	Mass		1.1kg	2.9kg	2.9kg	5.6kg			
	Unit outline din	noncion	168mm×40mm×149mm	150mm×100mm×318mm	150mm×100mm×318mm	350mm×128mm×200mm			
	Offic outline difficultion		W2	W3	W3	W4			
	Regenerative	100W		300W	300W	500W			
	capacity	Resistance value	82Ω	120Ω	47Ω	47Ω			
MDS-EJH-V1-10	20W	80Ω	0	0					
MDS-EJH-V1-15	20W 80Ω		0	0					
MDS-EJH-V1-20	100W 40Ω				0	0			
MDS-EJH-V1-40	120W	47Ω			0	0			

(Note 1) Install a cooling fan in the unit.

Combination with spindle drive unit

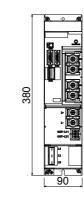
The regenerative resistor is not incorporated in the spindle drive unit. Make sure to install the external option regenerative resistor.

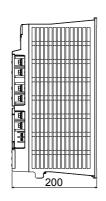
Corresponding			External option re	generative resistor		
spindle drive unit		MR-RB12	MR-RB32	MR-RB30	MR-RB50	
	Mass	0.8kg	2.9kg	2.9kg	5.6kg	
	Unit outline dimension	168mm×40mm×149mm	150mm×100mm×318mm	150mm×100mm×318mm	350mm×128mm×200mm	
		W2	W3	W3	W4	
	External option	GZG200W39OHMK	GZG200W120	GZG200W39	GZG300W39	
	regenerative resistor	GZGZ00W39OHWK	OHMK×3	OHMK×3	OHMK×3	
	Regenerative capacity	100W	300W	300W	500W	
	Resistance value	40Ω	40Ω	13Ω	13Ω	
MDS-EJ-SP-20	-	0	0			
MDS-EJ-SP-40	_			0	0	
MDS-EJ-SP-80	-			0	0	
MDS-EJ-SP-100	_			0	0	
MDS-EJ-SP-120	-				0	
MDS-EJ-SP-160	-					
MDS-EJ-SP2-20	-			0	0	

Corresponding			External option re	generative resistor		
spindle drive unit		FCUA-RB22	FCUA-RB37	FCUA-RB55	FCUA-RB75/2 (1 unit)	
	Mass	0.8kg	1.2kg	2.2kg	2.2kg	
	Unit outline dimension	30mm×60mm×215mm	30mm×60mm×335mm	40mm×80mm×400mm	40mm×80mm×400mm	
	Unit outline dimension	W5	W5	W6	W6	
	Regenerative capacity	155W	185W	340W	340W	
	Resistance value	40Ω	25Ω	20Ω	30Ω	
MDS-EJ-SP-20	-	0	0			
MDS-EJ-SP-40	-	0	0	0	0	
MDS-EJ-SP-80	-		0	0	0	
MDS-EJ-SP-100	-			0		
MDS-EJ-SP-120	-					
MDS-EJ-SP-160	-					
MDS-EJ-SP2-20	-	0	0	0		

				External of	option regenerative	ve resistor		
Corresponding spindle drive unit		R-UNIT1	R-UNIT2	R-UNIT3	R-UNIT4	R-UNIT5	FCUA-RB55 2 units connected in parallel	FCUA-RB75/2 2 units connected in parallel
	Mass	4.3kg	4.4kg	10.8kg	11.0kg	15.0kg	4.4kg	4.4kg
		355mm×	355mm×	375mm×	375mm×	375mm×	40mm×	40mm×
	I to it a continue allocations	105mm×	105mm×	276mm×	276mm×	276mm×	80mm×	80mm×
	Unit outline dimension	114mm	114mm	104mm	104mm	160mm	400mm	400mm
		W7	W7	W8	W8	W9	W6	W6
	Regenerative capacity	700W	700W	2100W	2100W	3100W	680W	680W
	Resistance value	30Ω	15Ω	15Ω	10Ω	10Ω	10Ω	15Ω
MDS-EJ-SP-20	_							
MDS-EJ-SP-40	-	0	0	0				0
MDS-EJ-SP-80	-	0	0	0	0	0	0	0
MDS-EJ-SP-100	-		0	0	0	0	0	0
MDS-EJ-SP-120	-		0	0	0	0	0	0
MDS-EJ-SP-160	-				0	0		
MDS-EJ-SP2-20	-							

External option regenerative resistor [Unit:mm] W1 W2 <u>40</u> W4 W3 W5 W6 W7 W8 W9

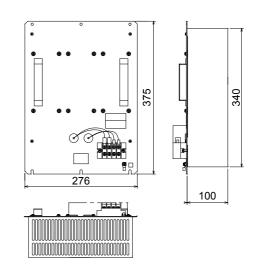

■Power backup unit MDS-D/DH-PFU


Use this unit to protect machines or drive units at power failure.

Specifications

Power	backup unit type	9	MDS-DH-PFU	MDS-D-PFU		
	Rated voltage	[V]	380 to 480AC (50/60Hz) (Exclusively for earthed-star supply system) Tolerable fluctuation : between +10% and -10%	200 to 230AC (50/60Hz) Tolerable fluctuation : between +10% and -15%		
AC Input Frequency	n : between +3% and -3%					
	Rated current	[A]	2	pply system) 200 to 230AC (50/60Hz) Tolerable fluctuation: between +10% and -15% 20fe fluctuation: between +3% and -3% 4 270 to 311DC Regenerative input: MAX 300A Power running output: MAX 200A at backup Single-phase 200 to 230VAC (50Hz or 60Hz) 50Hz at backu MAX 4 except for the power supply unit) after AC input instantaneous interruption 75ms or more to connect) (200VAC input, at maximum number of drive units to connect or the terminal block and connector area]		
DC Innut/	Rated voltage	[V]	513 to 648DC	270 to 311DC		
	Rated current [A]		ů ,			
	Voltage [V]		Single-phase 380 to 480VAC (50Hz or 60Hz) 50Hz at backup	Single-phase 200 to 230VAC (50Hz or 60Hz) 50Hz at backup		
	Current [A]		MAX 2	MAX 4		
	Maximum number of drive unit	ts to connect	6 units (except for the power supply unit)			
	Switching time		Within 100ms after AC inpu	t instantaneous interruption		
	Minimum backup t	time		75ms or more (200VAC input, at maximum number of drive units to connect)		
Degree of prote	ection		IP20 [except for the terminal	Il block and connector area]		
Cooling method	1		Natural	cooling		
Mass		[kg]	4	4		

Outline dimension drawing

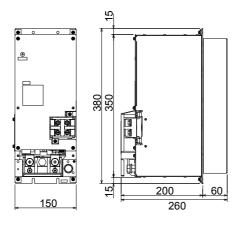

[Unit:mm]

■Regenerative resistor unit for power backup unit R-UNIT-6, R-UNIT-7

Specifications

Regenerative resistor type		R-UNIT-6	R-UNIT-7
Corresponding power backup unit type		MDS-DH-PFU	MDS-D-PFU
Resistance value	[Ω]	5	1.4
Instantaneous regeneration capacity	[kW]	128	114
Tolerable regeneration work amount	[kJ]	180	180
Cooling method		Natural-cooling	Natural-cooling
Mass	[kg]	10	10

Outline dimension drawing



■Capacitor unit MDS-D/DH-CU

Specifications

C	apacitor unit type	MDS-DH-CU	MDS-D-CU		
Compatible of	capacitor unit type	MDS-DH-PFU	MDS-D-PFU		
Capacity	[μ F]	7000	28000		
DC Input/Out	tput Rated voltage [V]	513 to 648DC	270 to 311DC		
Cooling meth	nod	Natural-cooling	Natural-cooling		
Mass	[kg]	11	11		

Outline dimension drawing

[Unit : mm]

SELECTION OF CABLES AND CONNECTORS

The following are the selection lists of the cables and connectors provided by Mitsubishi. Refer to Specifications manual of each drive system series when manufacturing the cables. (For E/EH Series, refer to "6.1 Selection of Wire" and "8.1 Selection of Cable".)

■MDS-E Series Power Cable/Connector and Brake Cable/Connector for Servo Motor Selection List

	Servo motor type -		rive u	nit		Power Cable			Brake Cable		
			type		Single connector	Ca	ıble	Single connector	Ca	Cable	
Sar			IDS-E	-		Moto	r side		Moto	r side	
Jei			V2	V 3	Drive unit side	Lead out in direction of motor shaft	Lead out in opposite direction of motor shaft	Drive unit side	Lead out in direction of motor shaft	Lead out in opposite direction of motor shaft	
	HG46		20	20	- All axes CNU01SEF						
HG Series	HG56	20	20	20	(AWG14) - L-axis only CNU01SEL (AWG14) - M-axis only CNU01SEM	MR-PWS1CBL M-A1-H : Length (m)	MR-PWS1CBL M-A2-H : Length (m)	CNU23S (AWG14)	MR-BKS1CBL □ M-A1-H □ : Length (m)	MR-BKS1CBL M-A2-H : Length (m)	
00.100	HG96		40	40	(AWG14) - S-axis only CNU01SES (AWG14)	2, 3, 5, 7, 10	2, 3, 5, 7, 10	(,	2, 3, 5, 7, 10	2, 3, 5, 7, 10	

		Dri	ve unit t	уре		Power Connect	or		Brake Connec	tor
Ser	vo motor type		MDS-E-		Drive unit	Moto	r side	Drive unit	Moto	r side
		V1	V2	V3	side	Straight	Right angle	side	Straight	Right angle
	HG75□-S105010					CNP14-2S (12) Applicable cable	CNP14-2L (12) Applicable cable			
	HG105□-S105010		20	20		outline ø10 to 12 (mm)	outline ø10 to 12 (mm)			
	HG75	20	40	40						
	HG105									
	HG123					CNP18-10S (14)	CNP18-10L (14)			
	HG142				- All axes	Applicable cable outline	Applicable cable outline			
	HG54				CNU01SEF	ø10.5 to 14 (mm)	ø10.5 to 14 (mm)			
	HG104				(AWG14) - L-axis only					
	HG223	40	40	40	CNU01SEL					CNB10-R2L (6) CNB10S-R2L (6) Applicable cable outline ø4.0 to 6.0 (mm)
HG Series	HG302		40 80	80	(AWG14) - M-axis only CNU01SEM	CNP22-22S (16) Applicable cable outline ø12.5 to 16 (mm)	CNP22-22L (16) Applicable cable outline ø12.5 to 16 (mm)	CNU23S (AWG14)	CNB10-R2S (6) CNB10S-R2S (6) Applicable cable outline ø4.0 to 6.0 (mm)	
001100	HG154				(AWG14) - S-axis only	CNP18-10S (14)	CNP18-10L (14) Applicable cable outline	(,		
	HG224	80	80		CNU01SES (AWG14)	ø10.5 to 14 (mm)	ø10.5 to 14 (mm)			
	HG204		160	80	(AVVG14)					
	HG303					CNP22-22S (16)	CNP22-22L (16)			
	HG354		160]	Applicable cable outline	Applicable cable outline			
	HG453	100	160W			ø12.5 to 16 (mm)	ø12.5 to 16 (mm)			
	HG603	160	100	1		, ,	. ,			
	HG702		160	–						
	HG703	160W	160W]		CNP32-17S (23)	CNP32-17L (23)			
	HG903	320]	Terminal block	ø22 to 23.8 (mm)	Applicable cable outline ø22 to 23.8 (mm)			
	HG1103	320W] —		connection					

■MDS-E Series Encoder Cable and Connector for Servo Motor Selection List

								Serv	o encoder o	cable			
						Motor	side encode	er cable		Ba	II screw side	encoder ca	ıble
Serve	motor		e unit t			ble D48/D51/	Sir	ngle connec			Ball screw s A405ET2AS		
t	уре					74)	Drive unit		r side		ble		onnector
		V1	V2	V3	Straight	Right angle	side	Straight	Right angle	Straight	Right angle	Straight	Right angle
	HG46			20									
	HG56		20										
	HG96												
	HG75	20		00									
	HG105		20	20 40									
	HG123		40										
	HG142												
	HG54]								
	HG104	40	40										
	HG223	40	80	40 80		CNV2E-9P-□M		CNE10-R10S (9)	CNE10-R10L (9)	CNV2E-8P-□M	CNV2E-9P-□M	CNE10-R10S (9)	CNE10-R10L (9) CNE10S-R10L (9)
HG	HG302	1		00		: Length (m)	CNU2S	CNE10S-R10S (9) Applicable	Applicable	: Length (m)	: Length (m)	Applicable	Applicable
Series	HG154				2, 3, 4, 5, 7, 10, 15, 20,	2, 3, 4, 5, 7, 10, 15, 20,	(AWG18)	cable outline	cable outline	2, 3, 4, 5, 7, 10, 15, 20,	2, 3, 4, 5, 7, 10, 15, 20,	cable outline	
	HG224	l	80		25, 30	25, 30		ø6.0 to 9.0	ø6.0 to 9.0	25, 30	25, 30	ø6.0 to 9.0	ø6.0 to 9.0
	HG204	80	160	80				(mm)	(mm)			(mm)	(mm)
	HG303	ĺ											
	HG354		160		1								
	HG453		160W										
	HG603	160											
	HG702	ĺ	160	_									
	HG703	160W	160W										
	HG903	320											
	HG1103	320W	-										

■MDS-E Series Power Connector for Spindle Motor Selection List

Spindle	e motor type		unit type S-E-	Power Connector	
Opinale	inotor type	SP	SP2	Drive unit side	Motor side
	SJ-D3.7/100-01			- All axes CNU01SEF (AWG14)	
	SJ-D5.5/100-01	80	80 16080 (M)	- L-axis only CNU01SEL (AWG14)	
	SJ-D5.5/120-01		10000 ((VI)	- M-axis only CNU01SEM (AWG14)	
	0.1.05.5/400.00	160	40000 (1)		
	SJ-D5.5/120-02	200	16080 (L)		
SJ-D Series	SJ-D7.5/100-01	100	10000 (1)		
(Normal)	SJ-D7.5/120-01 SJ-D11/100-01	160	16080 (L)		
	SJ-D15/80-01	200	_		
		240			
	SJ-D18.5/80-01	320			
	SJ-D22/80-01	240 320	_		
	SJ-D26/80-01	320		Terminal block connection	
SJ-D Series	SJ-D5.5/120-02T-S	160	16080 (L)		
(Hollow shaft)		200	16080 (L)		
	SJ-DG3.7/120-03T	100			
	SJ-DG5.5/120-04T SJ-DG7.5/120-05T	160	_		
SJ-DG Series	SJ-DG11/100-03T	200	_		
(High output)	SJ-DG11/120-03T	160	16080(L)		
	50 5G11/120-001	200	10000(L)		
	SJ-DG15/120-02T-K	200 240	-		
		240			
	SJ-DJ5.5/100-01	80	80	- All axes CNU01SEF (AWG14) - L-axis only CNU01SEL (AWG14)	
	30-203.3/100-01	00	16080 (M)	- M-axis only CNU01SEM (AWG14)	
			-		
SJ-DJ Series			80	- All axes CNU01SEF (AWG14)	
(Compact & lightweight)	SJ-DJ5.5/120-01	80	16080 (M)	- L-axis only CNU01SEL (AWG14) - M-axis only CNU01SEM (AWG14)	
ligi itweigi itj				IN ANS ONLY ONGO TO ENT (AWOTH)	
	SJ-DJ7.5/100-01	400	40000 (1)		
	SJ-DJ7.5/120-01 SJ-DJ11/100-01	160	16080 (L)	Terminal block connection	
	SJ-DJ15/80-01	200	_		
	SJ-DL0.75/100-01	20	20	- All axes CNU01SEF (AWG14)	
	00 020.707100 01	20	20	- All axes CN0013EF (AWG14) - L-axis only CNU01SEL (AWG14)	
	SJ-DL1.5/100-01	40	40	- M-axis only CNU01SEM (AWG14)	Terminal block connection
SJ-DL Series	SJ-DL3.7/240-01T	200	<u> </u>		
(Low-inertia)	SJ-DL5.5/150-01T	160	16080 (L)		
	SJ-DL5.5/200-01T		10000 (L)		
	SJ-DL5.5/240-05T SJ-DL7.5/150-01T	200 160	16090 (1)		
SJ-DL Series	30-DL7.3/130-011	100	16080 (L)		
(Hollow shaft)	SJ-DL5.5/200-01T-S	160	16080 (L)	Terminal block connection	
	SJ-DN7.5/80-01	160	16080 (L)		
SJ-DN Series	SJ-DN11/80-01	200			
(High-torque specifications)	SJ-DN15/80-01	200			
	SJ-DN18.5/80-01	200			
	SJ-V2.2-01T	40	40	- All axes CNU01SEF (AWG14)	
			80	- L-axis only CNU01SEL (AWG14)	
	SJ-V3.7-02ZT	80	16080 (M)	- M-axis only CNU01SEM (AWG14)	
	SJ-V15-09ZT	200	_		
011/0	SJ-V18.5-01ZT				
SJ-V Series (Normal)	SJ-V18.5-04ZT SJ-V22-01ZT	240	_		
(SJ-V22-01ZT SJ-V22-04ZT	320	_		
	SJ-V22-06ZT	240	_		
	SJ-V26-01ZT	320	_		
	SJ-V37-01ZT SJ-V45-01ZT	400		Terminal block connection	
	SJ-V45-01ZT SJ-V55-01ZT	640	_	Terrillial block connection	
	SJ-V11-01T	100	10000 // \		
	SJ-V11-09T	160	16080 (L)		
SJ-V Series	SJ-V15-03T	200	_		
(Wide range	SJ-V18.5-03T S I-V22-05T	240			
nstant output)	SJ-V22-05T SJ-V22-09T	320	_		
	SJ-VK22-19ZT	020			
SJ-VL Series (Low-inertia)	SJ-VL2.2-02ZT	40	40	- All axes CNU01SEF (AWG14) - L-axis only CNU01SEL (AWG14) - M-axis only CNU01SEM (AWG14)	
•	SJ-VL11-02FZT	100	10000 (1)	Tamain all black access of	
	SJ-VL11-05FZT-S01	160	16080 (L)	Terminal block connection	

■MDS-E Series Encoder Cable and Connector for Spindle Motor Selection List

					connecti				e encode		enindla	eide once	dor	
		Dain		sp	indle mot	tor	Curical			cting to a	spinale :	side enco	uer 	
		ty	ре	Motor	side PLG	cable		le side ac er TS5690		Spin	dle side e	encoder O	SE-1024	cable
Spindle	motor type	MD	S-E-		Single co	onnector		Single c	onnector	Ca	ble	Sing	gle conne	ctor er side
		SP	SP2	Cable	Drive unit side	Encoder side	Cable	Drive unit side	Encoder side	Straight	Right angle	Drive unit side	Straight	Right angle
	SJ-D3.7/100-01		80											ungic
	SJ-D5.5/100-01	80	16080											
	SJ-D5.5/120-01	160	(M) 16080											
	SJ-D5.5/120-02	200	(L)											
0100	SJ-D7.5/100-01		16080											
SJ-D Series (Normal)	SJ-D7.5/120-01 SJ-D11/100-01	160	(L)											
	SJ-D11/100-01	200	_	-										
	SJ-D18.5/80-01	240	_	1										
		320 240		-										
	SJ-D22/80-01	320	_											
SJ-D Series	SJ-D26/80-01	320 160	16080											
(Hollow shaft)	SJ-D5.5/120-02T-S	200	(L)											
	SJ-DG3.7/120-03T													
	SJ-DG5.5/120-04T SJ-DG7.5/120-05T	160	-											
SJ-DG Series	SJ-DG1:3/120-03T	200	_	<u> </u> 										
(High output)	SJ-DG11/120-03T	160	16080	1										
		200	(L)											
	SJ-DG15/120-02T-K	240	_											
	SJ-DJ5.5/100-01	80	80 16080											
SJ-DJ Series	SJ-DJ5.5/120-01		(M)	-										
(Compact &	SJ-DJ7.5/100-01 SJ-DJ7.5/120-01	160	16080											
lightweight)	SJ-DJ11/100-01	100	(L)											
	SJ-DJ15/80-01	200	_	1										
	SJ-DL0.75/100-01	20	20]										
	SJ-DL1.5/100-01	40	40	CNP2E-1-			CNP2E-			CNP3EZ-	CNP3EZ-		CNE20-	CNE20-
SJ-DL Series	SJ-DL3.7/240-01T SJ-DL5.5/150-01T	200	-	□M □: Length			1-□M □ : Length			2P-□M □ · Length	3P-□M □ : Length		29S (10) Applicable	29L (10) Applicable
(Low-inertia)	SJ-DL5.5/200-01T	160	16080 (L)	(m)	CNU2S (AWG18)	CNEPGS	(m)	CNU2S (AWG18)	CNEPGS	(m)	(m)	CNEPGS	cable	cable
	SJ-DL5.5/240-05T	200	_	2, 3, 4, 5, 7, 10, 15,			2, 3, 4, 5, 7, 10, 15,			2, 3, 4, 5, 7, 10, 15,	2, 3, 4, 5, 7, 10, 15,		outline ø6.8 to 10	outline ø6.8 to 10
	SJ-DL7.5/150-01T	160	16080	20, 25, 30			20,25, 30			20, 25, 30			(mm)	(mm)
SJ-DL Series (Hollow shaft)		160	(L) 16080 (L)											
,	SJ-DN7.5/80-01	160	16080											
SJ-DN Series (High-torque	SJ-DN11/80-01	200	(L)	-										
specifications)		200	_											
	SJ-DN18.5/80-01 SJ-V2.2-01T	200 40	40	-										
	SJ-V3.7-02ZT	80	80											
		00	16080 (M)	-										
	SJ-V15-09ZT SJ-V18.5-01ZT	200	_											
	SJ-V18.5-04ZT			-										
SJ-V Series	SJ-V22-01ZT	240	_											
(Normal)	SJ-V22-04ZT	320												
	SJ-V22-06ZT	240	_	-										
	SJ-V26-01ZT SJ-V37-01ZT	320 400	_	_										
	SJ-V45-01ZT			-										
	SJ-V55-01ZT	640	_											
	SJ-V11-01T	160	16080											
011/0	SJ-V11-09T		(L)	_										
SJ-V Series (Wide range	SJ-V15-03T	200	_	-										
constant output)	SJ-V18.5-03T SJ-V22-05T	240	_	-										
σαιράι)	SJ-V22-09T	320	_											
	SJ-VK22-19ZT													
SJ-VL Series	SJ-VL2.2-02ZT	40	40]										
(Low-inertia)	SJ-VL11-02FZT	160	16080											
	SJ-VL11-05FZT-S01		(L)	I				I	I	I				

■MDS-EM Series Power Cable/Connector and Brake Cable/Connector for Servo Motor Selection List

		Drive unit		Power Cable		Brake	Cable		
		type	Single connector	Ca	ble	Cable			
Servo m	otor type	MDS-EM-		Moto	r side	Motor side			
	SPV3		Drive unit side	Lead out in direction of motor shaft	Lead out in opposite direction of motor shaft	Lead out in direction of motor shaft	Lead out in opposite direction of motor shaft		
HG Series	HG96	10040 16040 16040S	- All axes CNU01SEF(AWG14) - L-axis only CNU01SEL(AWG14) - M-axis only CNU01SEM(AWG14) - S-axis only CNU01SES(AWG14)	MR-PWS1CBL □- M-A1-H □ : Length (m) 2, 3, 5, 7, 10	MR-PWS1CBL M-A2-H : Length (m) 2, 3, 5, 7, 10	MR-BKS1CBL	MR-BKS1CBL ☐ M-A2-H ☐ : Length (m) 2, 3, 5, 7, 10		

		Drive unit		Power Connector		Brake C	onnector
Servo m	notor type	type MDS-EM-	Drive unit side	Moto	r side	Moto	r side
		SPV3	Drive unit side	Straight	Right angle	Straight	Right angle
	HG75□-S105010			CNP14-2S (12) Applicable cable outline	CNP14-2L (12) Applicable cable outline		
	HG105□-S105010	10040		ø10 to 12 (mm)	ø10 to 12 (mm)		
	HG75	16040					
	HG105	16040S					
	HG123			CNP18-10S (14)	CNP18-10L (14)		
	HG142			Applicable cable outline	Applicable cable outline		
	HG54	10040	- All axes CNU01SEF	ø10.5 to 14 (mm)	ø10.5 to 14 (mm)		
	HG104	10040 10080 16040 16040S 16080 20080	(AWG14)				CND10 DOL (6)
	HG223		- L-axis only				
HG Series	HG302		CNU01SEL (AWG14) - M-axis only CNU01SEM	CNP22-22S (16) Applicable cable outline ø12.5 to 16 (mm)	CNP22-22L (16) Applicable cable outline ø12.5 to 16 (mm)	CNB10-R2S (6) CNB10S-R2S (6) Applicable cable outline Ø4.0 to 6.0 (mm)	CNB10-R2L (6) CNB10S-R2L (6) Applicable cable outline Ø4.0 to 6.0 (mm)
	HG154	10080	(AWG14) - S-axis only	(AWG14) CNP18-10S (14) CNP18-10L (14)			
	HG224	16080 20080	CNU01SES (AWG14)	ø10.5 to 14 (mm)	ø10.5 to 14 (mm)		
	HG204	200120	(AVVG14)				
	HG303	320120		CNP22-22S (16)	CNP22-22S (16)		
	HG354			Applicable cable outline ø12.5 to 16 (mm)	Applicable cable outline ø12.5 to 16 (mm)		
	HG453	200120					
	HG702	320120		CNP32-17S (23) Applicable cable outline ø22 to 23.8 (mm)	CNP32-17L (23) Applicable cable outline ø22 to 23.8 (mm)		

■MDS-EM Series Encoder Cable and Connector for Servo Motor Selection List

						Sen	vo encoder c	able			
				Motor	side encode	r cable		Ba	all screw side	encoder cal	ole
		Drive unit	Ca	ble	Si	ngle connect	or	Ball scr	rew side enco	oder (OSA405	ET2AS)
	motor pe	type MDS-EM-	(for D47/	D48/D51)	Drive unit	Moto	r side	Ca	ble	Single co	onnector
		SPV3	Straight	Right angle	side	Straight	Right angle	Straight	Right angle	Straight	Right angle
	HG96										
	HG75	10040									
	HG105	16040									
	HG123	16040S									
	HG142										
	HG54	10040				CNE10-R10S	CNE10-R10L			CNE10-R10S	CNE10-R10L
	HG104	10080 16040	CNV2E-8P- □M	CNV2E-9P- □M		(9) CNE10S-	(9) CNE10S-	CNV2E-8P- □M	CNV2E-9P- □M	(9) CNE10S-	(9) CNE10S-
HG	HG223	16040S	: Length (m)		CNU2S	R10S (9)	R10L (9)	: Length (m)	: Length (m)	R10S (9)	R10L (9)
Series	HG302	16080 20080	2, 3, 4, 5, 7, 10, 15, 20,	2, 3, 4, 5, 7, 10, 15, 20,	(AWG18)	Applicable cable outline	Applicable cable outline	2, 3, 4, 5, 7, 10, 15, 20,	2, 3, 4, 5, 7, 10, 15, 20,	Applicable cable outline	Applicable cable outline
	HG154	10080	25, 30	25, 30		ø6.0 to 9.0	ø6.0 to 9.0	25, 30	25, 30	ø6.0 to 9.0	ø6.0 to 9.0
	HG224	16080				(mm)	(mm)			(mm)	(mm)
	HG204	200120									
	HG303	320120									
	HG354										
	HG453	200120 320120									
	HG702	023120									

■MDS-EM Series Power Connector, Encoder Cable, and Connector for Spindle Motor Selection List

			Power C	onnector	When con	necting to	a spindle			le encoder When conn		a spindle si	de encode	er	
		Drive			Motor	motor r side PLG	cable		side accuracy	y encoder		-		SE-1024 ca	ıble
	le motor ype	unit type	Drive unit side	Motor side		Single c	onnector			onnector		ble	Sin	gle connec	ctor
,	, pc	MDS-EM- SPV3	l	Side	Cable	Drive unit side	Encoder side	Cable	Drive unit side	Encoder side	Straight	Right angle	Drive unit side	Encod Straight	er side Right angle
	SJ-D5.5/ 100-01 SJ-D5.5/ 120-01	10040 10080 16040S													
	SJ-D5.5/ 120-02	10040 10080 16040 16080 16040S 20080 200120													
SJ-D Series (Normal)	SJ-D7.5/ 100-01 SJ-D7.5/ 120-01	10040 10080 16040S													
	SJ-D11/ 100-01 SJ-D15/	16040 16080 16040S 20080													
	80-01 SJ-D18.5/ 80-01	200120 320120													
	SJ-D22/ 80-01	320120													
	SJ-D26/ 80-01	320120 10040													
SJ-D Series (Hollow shaft)	SJ-D5.5/ 120-02T-S	10040 10080 16040 16080 16040S 20080 200120													
	SJ-DG3.7/ 120-03T	10040 10080													
	SJ-DG5.5/ 120-04T SJ-DG7.5/	16040S 16040 16080													
SJ-DG Series	120-05T SJ-DG11/	16040S 20080													
(High output)	SJ-DG11/ 120-03T	200120 16040 16080 16040S 20080 200120	Terminal	Terminal	CNP2E- 1-□M □: Length			CNP2E- 1-□M			CNP3EZ- 2P-□M	CNP3EZ- 3P-□M □ : Length		CNE20- 29S (10)	CNE20- 29L (10)
	SJ-DG15/ 120-02T-K SJ-DJ5.5/	20080	block	block	(m) 2, 3, 4, 5, 7, 10, 15,	CNU2S (AWG18)	CNEPGS	□ : Length (m) 2, 3, 4, 5, 7, 10, 15,	CNU2S (AWG18)	CNEPGS	(m) 2, 3, 4, 5, 7, 10, 15,	(m) 2, 3, 4, 5, 7, 10, 15,	CNU2S (AWG18)	Applicable cable outline ø6.8 to 10	cable outline ø6.8 to 10
SJ-DJ Series (Compact &	3J-DJ5.5/ 120-01 SJ-DJ7.5/ 100-01 SJ-DJ7.5/ 120-01	10040 10080 16040S			20, 25, 30			20, 25, 30			20, 25, 30	20, 25, 30		(mm)	(mm)
lightweight		16040 16080 16040S													
	SJ-DJ15/ 80-01 SJ-DL3.7/	20080 200120 20080 200120													
SJ-DL Series	240-01T SJ-DL5.5/ 150-01T	16040 16080 16040S													
(Low-inertia)	SJ-DL5.5/ 240-05T	20080 200120 16040													
	SJ-DL7.5/ 150-01T SJ-DN7.5/	16080 16040S 10040													
SJ-DN Series	80-01 SJ-DN11/	10080 16040S													
(High-torque specifications)	80-01 SJ-DN15/ 80-01 SJ-DN18.5/ 80-01	20080 200120													
SJ-V Series (Normal)	SJ-V15- 09ZT SJ-V18.5- 01ZT	20080 200120													
SJ-V Series (Wide	SJ-V11- 01T SJ-V11-	16040 16080													
range constant output)	09T	16040S 20080 200120													
SJ-V Series (Hollow shaft)	SJ-VL11- 02FZT SJ-VL11- 05FZT-S01	16040 16080 16040S													

■MDS-EJ Series Power Cable/Connector and Brake Cable/Connector for Servo Motor Selection List

					Power Cable		Brake	Cable
				Single connector	Ca	ble	Ca	ble
			nit type S-EJ-		Moto	r side	Moto	r side
Servo	Servo motor type		V2	Drive unit side	Lead out in direction of motor shaft	Lead out in opposite direction of motor shaft	Lead out in direction of motor shaft	Lead out in opposite direction of motor shaft
	HG46	10	_		MR-PWS1CBL □	MR-PWS1CBL □	MR-BKS1CBL □	MR-BKS1CBL □
HG Series	HG56	15	_	Supplied for each drive unit	M-A1-H □: Length (m)	M-A2-H □ : Length (m)	M-A1-H □ : Length (m)	M-A2-H ☐: Length (m)
	HG96	30	30	each drive unit	2, 3, 5, 7, 10	2, 3, 5, 7, 10	2, 3, 5, 7, 10	2, 3, 5, 7, 10

				P	ower Connector		Brake C	onnector
Servo	motor type		nit type S-EJ-	Drive unit side	Moto	r side	Moto	r side
		V1	V2		Straight	Right angle	Straight	Right angle
	HG75□-S105010				CNP14-2S (12) Applicable cable	CNP14-2L (12) Applicable cable		
	HG105□-S105010	30	30		outline ø10 to 12 (mm)	outline ø10 to 12 (mm)		
	HG75							
	HG105							
	HG54				CNP18-10S (14)	CNP18-10L (14)		
	HG104				Applicable cable outline	Applicable cable outline		
	HG123				ø10.5 to 14 (mm)	ø10.5 to 14 (mm)		
	HG142						CNB10-R2S (6)	CNB10-R2L (6)
HG Series	HG223	40	40	Supplied for each drive unit			CNB10S-R2S (6) Applicable cable outline	CNB10S-R2L (6) Applicable cable outline
	HG302			each drive driit	CNP22-22S (16) Applicable cable outline ø12.5 to 16 (mm)	CNP22-22L (16) Applicable cable outline ø12.5 to 16 (mm)	ø4.0 to 6.0 (mm)	ø4.0 to 6.0 (mm)
	HG154				CNP18-10S (14) Applicable cable	CNP18-10L (14) Applicable cable		
	HG224	80	_		outline ø10.5 to 14 (mm)	outline ø10.5 to 14 (mm)		
	HG204				CNP22-22S (16)	CNP22-22L (16)		
	HG303				Applicable cable outline	Applicable cable outline		
	HG354	100	_		ø12.5 to 16 (mm)	ø12.5 to 16 (mm)		

■MDS-EJ Series Encoder Cable and Connector for Servo Motor Selection List

							Sei	rvo encoder	cable			
					Motor s	ide encod	ler cable		Ba	II screw side	encoder ca	ble
			unit	Ca	ble	S	ingle conne	ctor	Ball scre	ew side enco	der (OSA40	5ET2AS)
Servo	motor type		pe S-EJ-		D48/D51)	Drive	Moto	r side	Ca	ble	Single co	onnector
		V1	V2	Straight	Right angle	unit side	Straight	Right angle	Straight	Right angle	Straight	Right angle
	HG46	10	_									
	HG56	15	_									
	HG96											
	HG75	30	30									
	HG105 HG54	_ 30 30										
	HG54		<u> </u>	CNV2E-8P-	CNV2E-9P-		CNE10- R10S (9)	CNE10-	CNV2E-8P-	CNV2E-9P-	CNE10-	CNE10- B10L(0)
	HG104			□M	□M		CNE10S-	R10L (9) CNE10S-	□M	□М	R10S (9) CNE10S-	R10L (9) CNE10S-
HG	HG123			: Length (m)	☐ : Length	CNU2S	R10S (9)	R10L (9)	☐ : Length (m)	: Length (m)	R10S (9)	R10L (9)
Series	HG142	40	40	2, 3, 4, 5, 7,	(m) 2, 3, 4, 5, 7,	(AWG18)	Applicable	Applicable	2, 3, 4, 5, 7,	2, 3, 4, 5, 7,	Applicable	Applicable
	HG223			10, 15, 20,	10, 15, 20,		cable outline ø6.0 to 9.0	cable outline ø6.0 to 9.0	10, 15, 20,	10, 15, 20,	cable outline ø6.0 to 9.0	cable outline ø6.0 to 9.0
	HG302			25, 30	25, 30		(mm)	(mm)	25, 30	25, 30	(mm)	(mm)
	HG154											
	HG224											
	HG204	80 -										
	HG303	<u></u>										
	HG354	100	_									

■MDS-EJ Series Power Connector, Encoder Cable, and Connector for Spindle Motor Selection List

			Power	r Cable					Spind	le encoder	cable				
				nnecting dle motor	When cor	necting to motor	a spindle		١	When conn	ecting to a	spindle si	de encode	er	
		Drive unit			Motor	r side PLG	cable		ide accuracy TS5690 cable		Spi	indle side e	encoder O	SE-1024 ca	able
	le motor	type	Drive unit side	Motor side		Single c	onnector		Single co	onnector	Ca	ble	Sin	gle connec	ctor
	ype	MDS-EJ-	Side	Side	Cable	Drive unit		Cable		Encoder	Straight	Right angle	Drive unit	Encod	ler side
		SP				side	side		side	side	Ottaignt	Tilgitt aligie	side	Straight	Right angle
	SJ-D3.7/ 100-01	80	Supplied for each drive unit												
SJ-D	SJ-D5.5/ 100-01 SJ-D5.5/ 120-01	100													
Series (Normal)	SJ-D7.5/ 100-01 SJ-D7.5/ 120-01	120		Terminal	CNP2E- 1□M □: Length			CNP2E- 1-□M □: Length			CNP3EZ- 2P-□M	CNP3EZ- 3P-□M □ : Length		CNE20- 29S (10)	CNE20- 29L (10) Applicable
	SJ-D11/ 100-01	160	Terminal block	block	(m)	CNU2S (AWG18)	CNEPGS	(m) 2, 3, 4, 5,	CNU2S (AWG18)	CNEPGS	(m) 2, 3, 4, 5,	(m)	CNU2S (AWG18)	cable	cable
	SJ-DJ5.5/ 100-01 SJ-DJ5.5/	100	connection		7, 10, 15, 20, 25, 30			7, 10, 15, 20, 25, 30			7, 10, 15,	7, 10, 15, 20, 25, 30			ø6.8 to 10 (mm)
SJ-DJ	120-01														
(Compact &	SJ-DJ7.5/ 100-01 SJ-DJ7.5/ 120-01	120													
	SJ-DJ11/ 100-01	160													

■MDS-EH Series Power Connector and Brake Connector for Servo Motor Selection List

		Driv	e unit	type		Power Connecto	or		Brake Connec	tor
Serv	o motor type	l N	IDS-EH	1-	Drive unit	Moto	r side	Drive unit	Moto	r side
		V1	V2	V3	side	Straight	Right angle	side	Straight	Right angle
	HG-H75□- S105010 HG-H105□- S105010	10	10 20	_	- All axes	CNP14-2S (12) Applicable cable outline ø10 to 12 (mm)	CNP14-2L (12) Applicable cable outline ø10 to 12 (mm)			
	HG-H75		20		CNU01SEF (AWG14)					
	HG-H105				- L-axis only	CNP18-10S (14)	CNP18-10L (14)			
	HG-H54	20	20		CNU01SEL	Applicable cable	Applicable cable			
	HG-H104	20	40		(AWG14)	outline	outline			
	HG-H154			40	- M-axis only CNU01SEM	ø10.5 to 14 (mm)	ø10.5 to 14 (mm)			
HG-H	HG-H224	40	40 80		(AWG14)				CNB10-R2S (6)	CNB10-R2L (6)
Series	HG-H204	1			- S-axis only]	CNB10S-R2S (6)	CNB10-R2L (6)
	HG-H354	- 80	80		CNU01SES (AWG14)	CNP22-22S (16) Applicable cable	CNP22-22L (16) Applicable cable	CNU23S (AWG14)	Applicable cable	Applicable cable
	HG-H453	7 00	80W		(AWG14)	outline	outline	(W G 1 -1)	outline ø4.0 to 6.0 (mm)	outline ø4.0 to 6.0 (mm)
	HG-H703	80W	80W 160			ø12.5 to 16 (mm)	ø12.5 to 16 (mm)		04.0 to 6.0 (mm)	04.0 to 6.0 (mm)
	HG-H903	160	160	_		CNP32-17S (23) Applicable cable outline ø22 to 23.8 (mm)	CNP32-17L (23) Applicable cable outline ø22 to 23.8 (mm)			
	HG-H1502	200	-]	Terminal block	Terminal bloc	k connection]		
HQ-H	HQ-H903	160	160		connection	CNP32-17S (23) Applicable cable	CNP32-17L (23) Applicable cable			
Series	HQ-H1103	160W	_			outline ø22 to 23.8 (mm)	outline ø22 to 23.8 (mm)			

■MDS-EH Series Encoder Cable and Connector for Servo Motor Selection List

								Serv	o encoder o	able							
						Motor	side encode	r cable		Bal	l screw side	encoder ca	able				
Serve	o motor		e unit t			ble D51/D74)	Sin	ngle connec	tor			side encoder 5/OSA676ET2AS)					
t	ype		IDS-EN		(101 D40/	D31/D14)	Drive unit	Motor side		Ca	ble	Single c	onnector				
		V1	V2	V3	Straight	Right angle	side	Straight	Right angle	Straight	Right angle	Straight	Right angle				
	HG-H75	10	10														
	HG-H105	10	20														
	HG-H54	20	20														
	HG-H104	20	40														
	HG-H154		40	40	40	40	40	40	CNV2F-8P-	CNV2E-9P-		CNE10-	CNE10-	CNV2E-8P-	CNV2E-9P-	CNE10-	CNE10-
HG	HG-H224	40	80		□M	□M		R10S (9)	R10L (9)	□M	□M	R10S (9)	R10L (9)				
Series	HG-H204					☐ : Length	☐ : Length	CNU2S	CNE10S- R10S (9)	CNE10S- R10L (9)	□ : Length	☐ : Length	CNE10S- R10S (9)	CNE10S- R10L (9)			
	HG-H354	80	80		(m) 2, 3, 4, 5, 7,	(m) 2, 3, 4, 5, 7,	(AWG18)	Applicable	Applicable	(m) 2, 3, 4, 5, 7,	(m) 2, 3, 4, 5, 7,	Applicable	Applicable				
	HG-H453	80	80W		10, 15, 20,	10, 15, 20,		cable outline	cable outline	10, 15, 20,	10, 15, 20,	cable outline	cable outline				
	HG-H703	80W	80W 160		25, 30	25, 30		ø6.0 to 9.0 (mm)	ø6.0 to 9.0 (mm)	25, 30	25, 30	ø6.0 to 9.0 (mm)	ø6.0 to 9.0 (mm)				
	HG-H903	160	160	_													
	HG-H1502	200	_														
HQ	HQ-H903	160	160														
Series	HQ-H1103	160W	_														

■MDS-EH Series Power Connector for Spindle Motor Selection List

Spindle	motor type	Drive unit type MDS-EH-	Power Connect	or
		SP	Drive unit side	Motor side
	SJ-4-V2.2-03T	20		
	SJ-4-V3.7-03T	20		
	SJ-4-V5.5-07T	40	- All axes CNU01SEF (AWG14)	
	SJ-4-V7.5-12T	40	- L-axis only CNU01SEL (AWG14)	
	SJ-4-V7.5-13ZT	00		
	SJ-4-V11-18T	80		
SJ-4-V Series	SJ-4-V18.5-14T	100		
(Normal)	SJ-4-V22-18ZT			
	SJ-4-V22-15T	160		Terminal block connection
	SJ-4-V26-08ZT			
	SJ-4-V37-04ZT	200		
	SJ-4-V45-02T	000	Terminal block connection	
	SJ-4-V55-03T	320		
SJ-4-V Series (Wide range	SJ-4-V15-20T	100		
constant output)	SJ-4-V22-16T	160		

■MDS-EH Series Encoder Cable and Connector for Spindle Motor Selection List

							Spind	le encode	r cable				
				connectin					ecting to a	spindle s	ide encod	er	
		Drive unit type	Moto	r side PLG	cable		le side acc		Spi	ndle side e	encoder O	SE-1024 ca	able
Spind	dle motor	MDS-EH-		Single c	onnector		Single co	onnector	Ca	ble	Sin	gle conne	
t	type		Cable	Drive unit	Encoder	Cable	Drive unit	Encoder		Right	Drive unit	Encod	er side
		SP		side	side		side	side	Straight	angle	side	Straight	Right angle
	SJ-4-V2.2-												
	03T SJ-4-V3.7-	20											
	03T												
	SJ-4-V5.5-		1										
	07T	40											
	SJ-4-V7.5- 12T												
	SJ-4-V7.5-		1										
	13ZT	80											
	SJ-4-V11- 18T												
SJ-4-V	SJ-4-	100				011000							
Series (Normal)	V18.5-14T	100	CNP2E-1-			CNP2E- 1-□M			CNP3EZ- 2P-□M	CNP3EZ- 3P-□M		(10)	CNE20-29L (10)
(110111101)	SJ-4-V22-		□ : Length	CNU2S		□ : Length	CNU2S		☐ : Length	□ : Length		Applicable	Applicable
	18ZT SJ-4-V22-		(m)	(AWG18)	CNEPGS	(m)	(AWG18)	CNEPGS	(m)	(m)	CNEPGS	cable	cable
	15T	160	2, 3, 4, 5, 7, 10, 15, 20,	(2, 3, 4, 5, 7, 10, 15, 20,	V		2, 3, 4, 5, 7, 10, 15, 20,	2, 3, 4, 5, 7, 10, 15, 20,		outline ø6.8 to 10	outline ø6.8 to 10
	SJ-4-V26-		25, 30			25, 30			25, 30	25, 30		(mm)	(mm)
	08ZT SJ-4-V37-		1									. ,	, ,
	04ZT	200											
	SJ-4-V45-]										
	02T SJ-4-V55-	320											
	03T												
SJ-4-V Series (Wide	SJ-4-V15- 20T	100											
range constant output))	SJ-4-V22- 16T	160											

■MDS-EMH Series Power Connector and Brake Connector for Servo Motor Selection List

		Drive unit		Power Connector		Brake Co	onnector		
Serv	o motor type	type MDS-EMH-	Drive unit side	Moto	r side	Motor side			
HG-H54 HG-H104		SPV3		Straight	Right angle	Straight	Right angle		
	HG-H54	8040	- All axes	CNP18-10S (14)	CNP18-10L (14)				
	HG-H104	10040	CNU01SEF (AWG14)	1 '''	Applicable cable outline	CND10 D0C (C)	CND40 DOL (6)		
HG-H	HG-H154	8040	 L-axis only CNU01SEL (AWG14) 	ø10.5 to 14 (mm)	ø10.5 to 14 (mm)	CNB10-R2S (6) CNB10S-R2S (6)	CNB10-R2L (6) CNB10S-R2L (6)		
Series	HG-H204	10040 10060	- M-axis only	CNP22-22S (16)	CNP22-22L (16)	Applicable cable outline	Applicable cable outline		
	HG-H354	10060	CNU01SEM (AWG14) - S-axis only	Applicable cable outline	Applicable cable outline	ø4.0 to 6.0 (mm)	ø4.0 to 6.0 (mm)		
	HG-H453	10000	CNU01SES (AWG14)	ø12.5 to 16 (mm)	ø12.5 to 16 (mm)				

■MDS-EMH Series Encoder Cable and Connector for Servo Motor Selection List

						Serv	o encoder c	able						
				Motor	side encode	r cable		Ba	II screw side	encoder cal	ble			
Serve	o motor	Drive unit type	Ca # D4		Si	ngle connect	or			side encoder 5ET2AS)				
t	уре	MDS-EMH-			Drive unit Motor side		r side	Ca	ble	Single connector				
		SPV3	Straight Right angle		side	Straight	Right angle	Straight Right angle		Straight Right angl				
	HG-H54	8040	Straight CNV2E-8P-	CNV2E-8P-	CNV2E-8P-	CNV2E-8P-	CNV2F-9P-		CNE10-R10S	CNE10-R10L	CNV2E-8P-	CNV2F-9P-	CNE10-R10S	CNE10-R10L
	HG-H104	10040		□M		(9)	(9)	□M	□M	(9)	(9)			
HG-H	HG-H154	8040	☐ : Length	☐ : Length	CNU2S	CNE10S- R10S (9)	CNE10S- R10L (9)	☐ : Length (m)	☐ : Length	CNE10S- R10S (9)	CNE10S- R10L (9)			
Series	HG-H204	10040 (m) 10060 2, 3, 4, 5, 7,		(m) 2, 3, 4, 5, 7,	(m) (AWG18)	Applicable	Applicable cable outline	2, 3, 4, 5, 7,	(m) 2, 3, 4, 5, 7,	Applicable cable outline	Applicable cable outline			
	HG-H354	10060	10, 15, 20,	10, 15, 20,	·	ø6.0 to 9.0	ø6.0 to 9.0	10, 15, 20, 25, 30	10, 15, 20, 25, 30	ø6.0 to 9.0	ø6.0 to 9.0			
	HG-H453	10000	25, 30	25, 30		(mm)	(mm)	20, 30	20, 30		(mm)			

■MDS-EMH Series Power Connector, Encoder Cable, and Connector for Spindle **Motor Selection List**

									Spindle	e encode	r cable				
			Power	Cable		connection	•		Whe	en conne	cting to a	spindle	side enco	oder	
		Drive			Motor	side PLG	cable		e side ac er TS5690		Spino	lle side e	ncoder O	SE-1024	cable
	motor	unit type MDS- EMH-	Drive unit	Motor			gle ector		Sin conn	gle ector	Ca	ble	Sing	gle conne	ctor
Ly	/pe	CIVIN-	side	side	Cable	Drive	Encoder	Cable	Drive	Encoder		Right	Drive	Encod	er side
		SPV3				unit side side			unit side side		Straight angle		unit side	Straight	Right angle
SJ-4-V Series (Normal)	SJ-4- V7.5- 13ZT SJ-4- V11-18T	8040			CNP2E-1- □M			CNP2E- 1-□M			CNP3EZ- 2P-□M	CNP3EZ- 3P-□M		CNE20- 29S (10)	CNE20- 29L (10)
(I VOITIAI)	SJ-4- V18.5- 14T	10040 10060	Terminal block connection	block connection	□ : Length (m)	(A)A/G18)	CNEPGS	1-□M □ : Length	(AMG18)		: Length (m) 2, 3, 4, 5,	☐ : Length (m)	CNU2S (AWG18)	` '	Applicable cable outline
SJ-4-V Series (Wide range constant output)	SJ-4- V15-20T	10040 10060			2, 3, 4, 5, 7, 10, 15, 20, 25, 30			2, 3, 4, 5, 7, 10, 15, 20, 25, 30			7, 10, 15,	7, 10, 15, 20, 25, 30		ø6.8 to 10 (mm)	

■MDS-EJH Series Power Connector and Brake Connector for Servo Motor Selection List

HG-H HG-H Series		Drive unit		Power Connector		Brake C	onnector			
Serv	o motor type	type MDS-EJH-	Drive unit side	Moto	r side	Motor side				
HG-H		V1		Straight	Right angle	Straight	Right angle			
	HG-H75□-S105010	15		CNP14-2S (12)	CNP14-2L (12)					
	HG-H105□-S105010	20		Applicable cable outline	Applicable cable outline					
	110111002 0100010	20		ø10 to 12 (mm)	ø10 to 12 (mm)	01/04/0 000 (0)	OND40 DOL (0)			
пс п	HG-H75	15	0) CNP18-10L (14)	CNB10-R2S (6) CNB10S-R2S (6) Applicable cable outline	CNB10-R2L (6)			
1	HG-H105		Supplied for each drive unit	CNP18-10S (14)			CNB10S-R2L (6) Applicable cable outline			
	HG-H54	20		Applicable cable outline	Applicable cable outline	ø4.0 to 6.0 (mm)	ø4.0 to 6.0 (mm)			
	HG-H104			ø10.5 to 14 (mm)	ø10.5 to 14 (mm)					
	HG-H154	40								

■MDS-EJH Series Encoder Cable and Connector for Servo Motor Selection List

	Servo motor type MDS-EJ V1 HG-H75 15 HG-H105					Serv	o encoder c	ncoder cable							
				Motor	side encode	r cable		Ва	II screw side	encoder cal	ble				
Servo	o motor	Drive unit type	Ca " Da		Si	ngle connect	tor	Ball scr	ew side enco	oder (OSA40	ET2AS)				
ty	ype	MDS-EJH-	(for D4	8/D51)	Drive unit	Moto	r side	Ca	ble	Single connector					
		V1	Straight Right angle		side	Straight	Right angle	Straight	Right angle	Straight	Right angle				
	HG-H75	15	CNV2E-8P-	CNV2E-8P- CN	CNV2E-9P-					CNE10-R10S	CNE10-R10L	CNV2E-8P-	CNV2E-9P-	CNE10-R10S	CNE10-R10L
	HG-H105		□M □ · Length	□M □ : Longth		(9) CNE10S-	(9) CNE10S-	□M	□M	(9) CNE10S-	(9) CNE10S-				
HG-H Series	HG-H54	20	(m)	(m)		(m) (m)	(m) CNU2S (AWG18)	R10S (9) Applicable	R10L (9) Applicable	: Length	(m)	R10S (9) Applicable	R10L (9) Applicable		
	HG-H104		2, 3, 4, 5, 7, 10, 15, 20,	2, 3, 4, 5, 7, 10, 15, 20,		cable outline	cable outline	2, 3, 4, 5, 7, 10, 15, 20,	2, 3, 4, 5, 7, 10, 15, 20,	cable outline ø6.0 to 9.0	cable outline ø6.0 to 9.0				
	HG-H154	40	25 20			(mm)	(mm)	25, 30	25, 30	(mm)	(mm)				

LIST OF CABLES

[Manufacturer (Column and figure on the left show drive unit side.)]

a : Honda Tsushin Kogyo b : Japan Aviation Electronics Industry c : Hirose Electric d : 3M e : J.S.T. f : DDK g : Tyco Electronics

<Optical communication cable>

	Item	Model	Length	Contents	Ma	nu-	Com	patible m	odel
	itelli	iviodei	(m)	Contents	fact	urer	E/EH	EM/EMH	EJ/EJH
		J396 L0.3M	0.3						
		J396 L0.5M	0.5						
	Optical communication cable	J396 L1M	1		a	a	0	0	0
	For wiring between drive units (inside panel)	J396 L2M	2		ا	a			~
		J396 L3M	3						
		J396 L5M	5						
For	Optical communication cable	J395 L3M	3						
CN1A/	For wiring between drive units (outside panel)	J395 L5M	5		a	a	0	0	
CN1A/	For wiring between NC-drive units	J395 L7M	7		a	a			~
OPT1A	For wining between NC-drive drifts	J395 L10M	10						
OFTIA		G380 L5M	5						
		G380 L10M	10						
	Ontical communication cable	G380 L12M	12	refat _Table					
	Optical communication cable For wiring between drive units (outside panel)	G380 L15M	15		g	g	0	0	0
		G380 L20M	20	40 00					
		G380 L25M	25						
		G380 L30M	30						

(Note1) For details on the optical communication cable, refer to the section "Optical communication cable specification" in Specifications Manual of each drive unit.

<Battery cable and connector>

	Item	Model	Length	Contents	Ma	nu-	Com	patible m	odel
	item	Wodei	(m)	Contents	fact	urer	E/EH	EM/EMH	EJ/EJH
		DG30-0.3M	0.3						
		DG30-0.5M	0.5						
	Pottony poblo	DG30-1M	1.0						
	Battery cable	DG30-2M	2.0		_	_	0	0	0
	(For drive unit - battery box, For drive unit - drive unit)	DG30-3M	3.0		е	е	0	"	
For drive	For drive driit - drive driit)	DG30-5M	5.0						
unit		DG30-7M	7.0						
		DG30-10M	10.0						
	Domer, coble	MR-BT6V2CBL0.3M	0.3						0
	Battery cable	MR-BT6V2CBL1M	1		е	е	-	_	

(Note1) For MDS-EJ/EJH, drive unit - drive unit connection is not available.

<Power supply communication cable and connector>

	Item	Model	Length	Contents	Ma	nu-		Compatib		
	item	Model	(m)	Contents	fact	urer	E/EH	EM/EMH	EJ/EJH	EX-CVP
For CN4/9	Power supply communication cable	SH21	0.35 0.5 1 2 3		d	d	0	-	-	0
	Power supply communication cable connector set	FCUA-CS000	-	.	d	d	0	-	-	0
For CN23	Contactor control output connector Applicable cable outline: 0.85mm² to	CNU23SCV2 (AWG14) These connectors are				е	0	-	-	0
TOT CINES	3.5mm² Finish outside diameter: to ø4.2mm	supplied for each power supply unit.	_	(T)		е	0	-	-	0
For CN24	External emergency stop input connector	CNU24S (AWG24)	-			f	0	-	-	0
For CN/48	phase	MDS-EX-PSC-01 These connectors are supplied for				е	-	-	-	0
1 01 01146	2.1mm ² Finish outside diameter: to ø3.9mm	MDS-EX-CVP- 1100H	_			е	-	-	-	0

<Power backup unit connector>

	Item	Model	Length (m)	Contents	Ma fact	nu- urer	Compati D-PFU	ole model DH-PFU
For CN43	Input/output connector for power backup unit	CNU43S (AWG22)	-		f	f		0
For TE1	Power connector for power backup unit	CNU01SPFU	-		•	e	0	0
	,	(AWG14)	-		•	e	0	0

<STO input connector>

	Item	Model	Length	Contents	Manu-	Com	patible m	odel
	iteiri	Model (m) Contents		facturer	E/EH	EM/EMH	EJ/EJH	
	STO cable	MR-D05UDL3M-B	-		g	0	-	0
For CN	STO short-circuit connector	These connectors are supplied for each drive unit.	-	Required when not using dedicated wiring STO function.	b	0	-	0

<DI/O analog output connector>

Item		Model	Length	Contents	Manu-	Com	patible m	odel
	iteili	Model	(m)	Contents	facturer	E/EH	EM/EMH	EJ/EJH
or CN9	DI/O analog output connector (MDS-E/EH,EM/EMH,EJ/EJH-V1/EJ-SP)	FCUA-CS000	-	•	d	0	0	0
-or Cina	DI/O analog output connector (MDS-EJ-V2/SP2)	FCUA-DJ200	-		d	-	-	0

<Servo motor/Tool spindle motor cable and connector>

Item		Model	Length	Contents	Ma	nu-	Com	patible m	odel
	item	Model	(m)	Contents	fact	urer	E/EH	EM/EMH	EJ/EJH
		CNV2E-8P-2M	2						
		CNV2E-8P-3M	3						
		CNV2E-8P-4M	4						
		CNV2E-8P-5M	5						
		CNV2E-8P-7M	7		d	f	0	0	0
		CNV2E-8P-10M	10	F-7	l u	'		"	~
		CNV2E-8P-15M	15						
For		CNV2E-8P-20M	20						
CN2/3	For HG/HG-H, HQ-H, HG-JR	CNV2E-8P-25M	25						
For	Motor side encoder cable (for D47/D48/D51/D74)	CNV2E-8P-30M	30						
CN3L/	Ball screw side encoder cable (OSA405ET2AS,	CNV2E-9P-2M	2						
CN3M/	OSA676ET2AS)	CNV2E-9P-3M	3						
CN3S		CNV2E-9P-4M	4						
		CNV2E-9P-5M	5						
		CNV2E-9P-7M	7		d	f	0	0	0
		CNV2E-9P-10M	10		ľ		_		_
		CNV2E-9P-15M	15						
		CNV2E-9P-20M	20						
		CNV2E-9P-25M	25						
		CNV2E-9P-30M	30						
For motor	For HG/HG-H, HQ-H, HG-JR	CNE10-R10S(9)	-		1	f	0	0	0
encoder/ Ball	Motor side encoder connector (for D47/D48/D51/D74)/ Ball screw side encoder connector (OSA405ET2AS,	CNE10-R10L(9)	-	4	1	f	0	0	0
screw side	OSA676ET2AS)	CNE10S-R10S(9)	-		1	f	0	0	0
encoder	Applicable cable outline ø6.0 to 9.0mm	CNE10S-R10L(9)	-		1	f	0	0	0

	Item	Model	Length	Contents		nu-		patible m	
	item		(m)	Contents	fact	urer	E/EH	EM/EMH	EJ/EJH
		CNV2E-HP-2M	2						
		CNV2E-HP-3M	3						
		CNV2E-HP-4M	4						
		CNV2E-HP-5M	5						
CN3	MDS-EX-HR/MDS-B-HR unit cable	CNV2E-HP-7M	7		d	c	0	0	0
0140	INDO-EX-III VINIDO-B-I II I driit cable	CNV2E-HP-10M	10	₩_~.	"	"	~	~	~
		CNV2E-HP-15M	15						
		CNV2E-HP-20M	20						
		CNV2E-HP-25M	25						
		CNV2E-HP-30M	30						
For MDS- EX-HR/ MDS-B- HR unit	MDS-EX-HR/MDS-B-HR connector (For DRIVE, CON1, 2: 1) (For SCALE, CON3: 1) Applicable cable outline ø8.5 to 11mm	CNEHRS(10)	-	da		С	0	0	0
u	7.pp. oddio oddin o dolio to 1111111								
		CNV2E-D-2M	2						
		CNV2E-D-3M	3						
		CNV2E-D-4M	4						
		CNV2E-D-5M	5 7						
For CN3	MDS-B-SD unit cable	CNV2E-D-7M	10		d	d	0	-	-
		CNV2E-D-10M CNV2E-D-15M	15	_					
		CNV2E-D-15M CNV2E-D-20M	20						
		CNV2E-D-20M	25						
		CNV2E-D-25M CNV2E-D-30M	30						
		CINVZE-D-30IVI	30		-	-			
For MDS- B-SD unit	MDS-B-SD connector (Two-piece set)	FCUA-CS000	-	•	d	d	0	-	-
For CN2/3	Encoder connector	CNU2S(AWG18)	-		(d	0	0	0

<Brake cable and connector>

Item		Model	Length	Contents	Manu-	Com	patible m	odel
	item		(m)	Contents	facturer	E/EH	EM/EMH	EJ/EJH
	Brake connector for	CNB10-R2S(6)	-		f	0	0	0
	<200V Series> HG (Except for HG46, 56, 96) <400V Series>	CNB10-R2L(6)	-	4	f	0	0	0
	HG-H, HQ-H	CNB10S-R2S(6)	-		f	0	0	0
For	Applicable cable outline ø4.0 to 6.0mm	CNB10S-R2L(6)	-	4	f	0	0	0
motor brake	Brake cable for HG46/56/96 Lead out in direction of motor shaft	MR-BKS1CBL 2M-A1-H MR-BKS1CBL 3M-A1-H MR-BKS1CBL 5M-A1-H MR-BKS1CBL 7M-A1-H MR-BKS1CBL 10M-A1-H	2 3 5 7 10		b	0	0	0
	Brake cable for HG46/56/96 Lead out in opposite direction of motor shaft	MR-BKS1CBL 2M-A2-H MR-BKS1CBL 3M-A2-H MR-BKS1CBL 5M-A2-H MR-BKS1CBL 7M-A2-H MR-BKS1CBL 10M-A2-H	2 3 5 7		b	0	0	0
For CN20	Brake connector for motor brake control output	CNU23S(AWG14)	-		f	0	-	-

<Power connector>

	Item	Model	Length (m)	Contents	Manu- facturer		patible m	
	Power connector for <200V Series> HG75, 105, 54, 104, 154, 224, 123, 223, 142	CNP18-10S(14)	-	0=	f	0	0	0
	HG-JR73, 153□-S105003 <400V Series> HG-H75, 105, 54, 104, 154, 224 HG-JR734, 1534□-S105003 Applicable cable outline ø10.5 to 14mm	CNP18-10L(14)	-		f	0	0	0
	Power connector for <200V Series> HG204, 354, 303, 453, 603, 302	CNP22-22S(16)	-	0=	f	0	0	0
	<400V Series> HG-H204, 354, 453, 703 Applicable cable outline ø12.5 to 16mm	CNP22-22L(16)	-		f	0	0	0
For	Power connector for <200V Series> HG702, 703, 903, 1103 <400V Series>	CNP32-17S(23)	-	0=	f	0	0	-
motor power	HG-H903 HQ-H903,1103 Applicable cable outline <i>σ</i> 22 to 23.8mm	CNP32-17L(23)	-		f	0	0	-
	Power connector for <200V Series> HG75, 105□-S105010	CNP14-2S(12)	-	0=	f	0	0	0
	HG-JR73, 153□-S105010 <400V Series> HG-H75, 105□-S105010 HG-JR734, 1534□-S105010	CNP14-2L(12)	-		f	0	0	0
	Power cable for HG46/56/96 Lead out in direction of motor shaft	MR-PWS1CBL 2M-A1-H MR-PWS1CBL 3M-A1-H MR-PWS1CBL 5M-A1-H MR-PWS1CBL 7M-A1-H	2 3 5 7		b	0	-	0
	Power cable for HG46/56/96 Lead out in opposite direction of motor shaft	MR-PWS1CBL 10M-A1-H MR-PWS1CBL 2M-A2-H MR-PWS1CBL 3M-A2-H MR-PWS1CBL 5M-A2-H MR-PWS1CBL 7M-A2-H	10 2 3 5 7		b	0	-	0
	Power connector for MDS-E-V1-20 to 160W MDS-E-V2-20 to 160W MDS-E-V3-20 to 80 MDS-E-SP-20 to 80	MR-PWS1CBL 10M-A2-H - All axes CNU01SEF(AWG14) - L-axis only	10	ᆲ	e			
For TE1	MDS-E-SP2-20 to 80 MDS-E-SP2-20 to 80 MDS-E-SP2-16080 (M-axis) MDS-EH-V1-10 to 80W MDS-EH-V2-10 to 160 MDS-EH-V3-40 MDS-EH-SP-20 to 80	CNU01SEL(AWG14) · M-axis only CNU01SEM(AWG14) · S-axis only CNU01SES(AWG14)	_	G U Table	е	0	_	-
	Power connector for	CNU01SECV(AWG14)			е	0	_	
	MDS-E-CV-37/75	CNOUTSECV(AWG14)	_	€ 1	е		_	_
For CN31 L/M/S	Power connector for MDS-EM/EMH Series	- All axes CNU01SEF(AWG14) - L-axis only CNU01SEL(AWG14) - M-axis only CNU01SEM(AWG14)			е	_	0	_
	Control neuros connectos (c. MDO FM/FM/ C.	S-axis only CNU01SES(AWG14)		€ U ™	е			
For CN22	Control power connector for MDS-EM/EMH Series Applicable cable outline ø0.5 to 1.25mm	RCN22	-	=	f	-	0	-
OI GINZZ	Control power connector for MDS-EM/EMH Series Applicable cable outline ø1.25 to 2.2mm	RCN22S	-	=	f	-	0	-

<Drive unit side main circuit connector>

	Item	Model	Length	Contents	Manu-		patible m	
	item	Model	(m)		facturer	E/EH	EM/EMH	EJ/EJH
	<200V series>		-	000000	е	_	-	0
	For MDS-EJ-V1-10, 15, 30 For MDS-EJ-SP-20	These connectors are supplied for	-		е	-	-	0
	Applicable cable outline: 0.8mm² to 2.1mm² Finish outside diameter: to Ø3.9mm	each drive unit.	-		е	-	-	0
			-		е	-	-	0
	<200V series> For MDS-EJ-V1-40, 80 For MDS-EJ-V2-40		-	<u>(1880)</u>	е	-	-	0
	Applicable cable outline: (For CNP1, for CNP3/CNP3L/CNP3M) 1.25mm² to 5.5mm² (For CNP2)	These connectors are supplied for	-		е	-	-	0
	(FOF CNP2) 0.14mm² to 2.1mm² Finish outside diameter: (FOF CNP1, for CNP3/CNP3L/CNP3M)	each drive unit.	-	000	е	-	-	0
For drive	to ø4.7mm (For CNP2) to ø3.9mm²		-		е	-	-	0
unit			-		е	-	-	0
	<200V series> For MDS-EJ-V2-30	These connectors are supplied for	_		е	-	_	0
	For MDS-EJ-SP2-20	each drive unit.	-		е	-	-	0
			-	(Z.L)	е	-	-	0
			-	000000	е	-	-	0
	<400V series> For MDS-EJH-V1-10,15,20,40 Applicable cable outline:0.8mm² to 2.1mm²	These connectors are supplied for	-		е	-	-	0
	Finish outside diameter: to ø3.9mm	each drive unit.	-		е	-	-	0
			-		е	-	-	0

<Spindle encoder cable and connector>

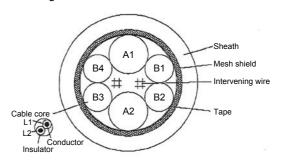
Item		Model	Length	Contents		nu-	nu- Compatible m		odel	
	item		(m)	Contents	facturer		E/EH	EM/EMH	EJ/EJH	
		CNP2E-1-2M	2							
		CNP2E-1-3M	3							
		CNP2E-1-4M	4							
	Motor side PLG cable	CNP2E-1-5M	5							
For CN2	Spindle side accuracy encoder	CNP2E-1-7M	7		d	١_	0	0	0	
FOI CIN2	TS5690 cable	CNP2E-1-10M	10	F-1	l a	g	"	0		
	1 55690 Cable	CNP2E-1-15M	15							
		CNP2E-1-20M	20							
		CNP2E-1-25M	25		ĺ		İ			
		CNP2E-1-30M	30		İ	İ	İ	İ		
		CNP3EZ-2P-2M	2							
		CNP3EZ-2P-3M	3							
		CNP3EZ-2P-4M	4							
		CNP3EZ-2P-5M	5							
		CNP3EZ-2P-7M	7	F-7	١.	١.	0	0		
		CNP3EZ-2P-10M	10		d	f	0	0	0	
		CNP3EZ-2P-15M	15							
		CNP3EZ-2P-20M	20							
		CNP3EZ-2P-25M	25							
	Spindle side encoder	CNP3EZ-2P-30M	30		İ					
For CN3	OSE-1024 cable	CNP3EZ-3P-2M	2							
		CNP3EZ-3P-3M	3							
		CNP3EZ-3P-4M	4							
		CNP3EZ-3P-5M	5							
		CNP3EZ-3P-7M	7	F-1	١.	١.				
		CNP3EZ-3P-10M	10	F-1	d	f	0	0	0	
		CNP3EZ-3P-15M	15	_						
		CNP3EZ-3P-20M	20							
		CNP3EZ-3P-25M	25							
		CNP3EZ-3P-30M	30							
	Motor side PLG connector		1	_						
	Spindle side accuracy encoder	CNEPGS	_		(g	0	0	0	
For	TS5690 connector	1 - 1 - 2 - 2 - 2			'					
spindle	Spindle side encoder							<u> </u>		
motor	OSE-1024 cable	CNE20-29S(10)	-			f	0	0	0	
1110101	OGE-1024 cable			ıîl □ \						
	Applicable cable outline ø6.8 to 10mm	CNE20-29L(10)	-			f	0	0	0	
	- ' '				\vdash					
For CN2/3	Spindle encoder drive unit side connector	CNU2S(AWG18)	-		(d	0	0	0	

■Cable wire

The specifications of the wire used for each cable, and the machining methods are shown in this section. Mitsubishi uses the cables shown in the tables below. When manufacturing the encoder cable and battery connection cable, use the wires shown below or equivalent products.

(1) Encoder cable

(a) Heat resistant specifications cable

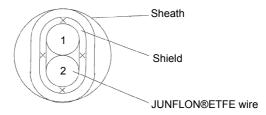

` '									
Wire type	Finish	Sheath	No. of		Wire characteristics				
(other manufacturer's product)	outer diameter	material	pairs	Configuration	Conductive resistor	Withstand voltage	Insulation resistance	Heat resistance temperature	Flexibility
BD20288 Compound 6-pair shielded cable	8.7mm	Heat resistant	2 (0.5mm²)	100 strands/ 0.08mm	40.7Ω/km or less	500VAC/	1000 MΩ/km	105°C	70×10 ⁴ times or more
Specification No. Bangishi-17145 (Note 1)	0.7111111	PVC	4 (0.2mm²)	40 strands/ 0.08mm	103Ω/km or less	1min	or more	105 C	at R200

(b) General-purpose heat resistant specifications cable

Wine tune	Finish	Sheath	No. of	Wire characteristics						
Wire type (other manufacturer's product)	outer diameter	material	pairs	Configuration	Conductive resistor	Withstand voltage	Insulation resistance	Heat resistance temperature	Flexibility	
BD20032 Compound 6-pair shielded cable			2 (0.5mm²)	100 strands/ 0.08mm	40.7Ω/km or less	500VAC/	1000		100×10 ⁴	
Specification No. Bangishi-16903 Revision No. 3 (Note 1)	8.7mm	PVC	4 (0.2mm²)	40 strands/ 0.08mm	103Ω/km or less	1min	MΩ/km or more	60°C	times or more at R200	

(Note 1)BANDO Electric Wire (http://www.bew.co.jp/)
(Note 2)The Mitsubishi standard cable is the (a) Heat resistant specifications cable. When the working environment temperature is low and so higher flexibility is required, use the (b) General-purpose heat resistant specifications cable.

Compound 6-pair cable structure drawing


Core identification

Pair No.	Insulator color							
Fall No.	L1	L2						
A1 (0.5mm²)	Red	White						
A2 (0.5mm²)	Black	White						
B1 (0.2mm²)	Brown	Orange						
B2 (0.2mm ²)	Blue	Green						
B3 (0.2mm²)	Purple	White						
B4 (0.2mm²)	Yellow	White						

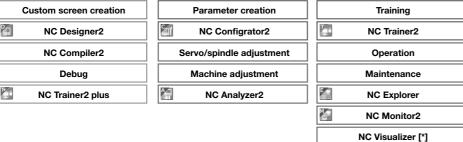
(2) Battery connection cable

Wire type (other manufacturer's product)	Finish outer diameter	Sheath material	No. of pairs	Wire characteristics					
				Configuration	Conductive resistor	Withstand voltage	Insulation resistance	Heat resistance temperature	Flexibility
J14B101224-00 Two core shield cable (Note 1)	3.3mm	PVC	1 (0.2mm²)	7strands / 0.2mm	91.2Ω/km or less	500VAC/ 1min	1000MΩ/km or less	80°C	R33mm
(Note 1)Junkosha Inc. http://www.junkosha.co.jp/english/index.html Dealer: TOA ELECTRIC INDUSTRIAL CO.,LTD. http://www.toadenki.co.jp/en/									

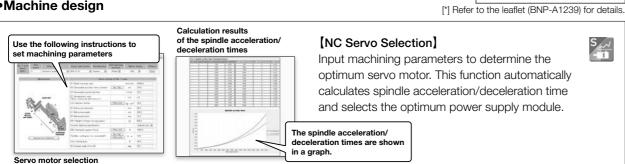
Two core shield cable structure drawing

Core identification

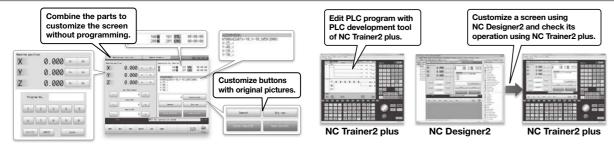
No.	Insulator color						
1	Red						
2	Black						


SOFTWARE TOOLS

SOFTWARE TOOLS


Process flow from machine design and development to operation and maintenance

Machine design Electrical circuitry design NC-related processes Servo selection Parameter creation Training

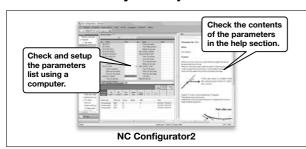


Machine design

Electrical circuitry design

[NC Designer2]

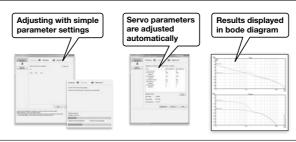
We provide a developmental environment where the MTB can customize screens easily. Two types of screen development methods are available; the interpreter method (programming without C++) for simple screen development, and the compilation method with a complex controller (programming with C++).


[NC Compiler2]

NC Compiler2 is required when the compilation method is applied.

[NC Trainer2 Plus]

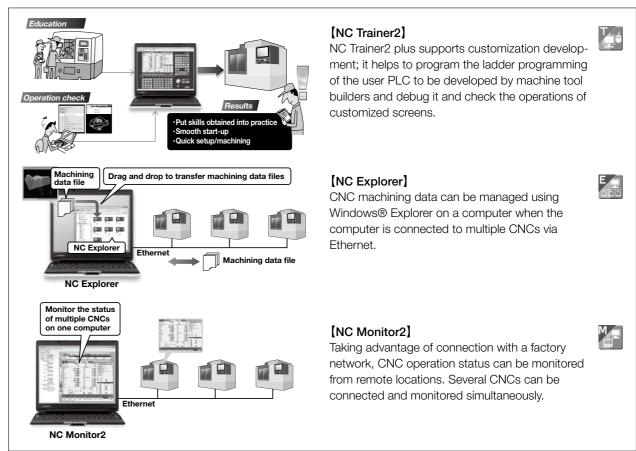
NC Trainer2 plus supports customization development; it helps to program the ladder programming of the user PLC to be developed by machine tool builders and debug it and check the operations of customized screens.


Machine assembly and adjustment

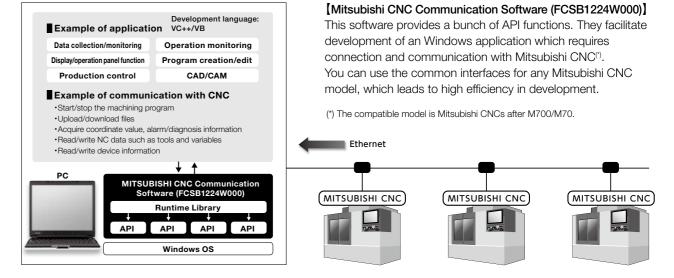
[NC Configurator2]

NC parameters required for NC control or machine operation can be edited on a computer. It is also possible to create initial parameters simply by inputting the machine configuration.

Machine assembly and adjustment



[NC Analyzer2]



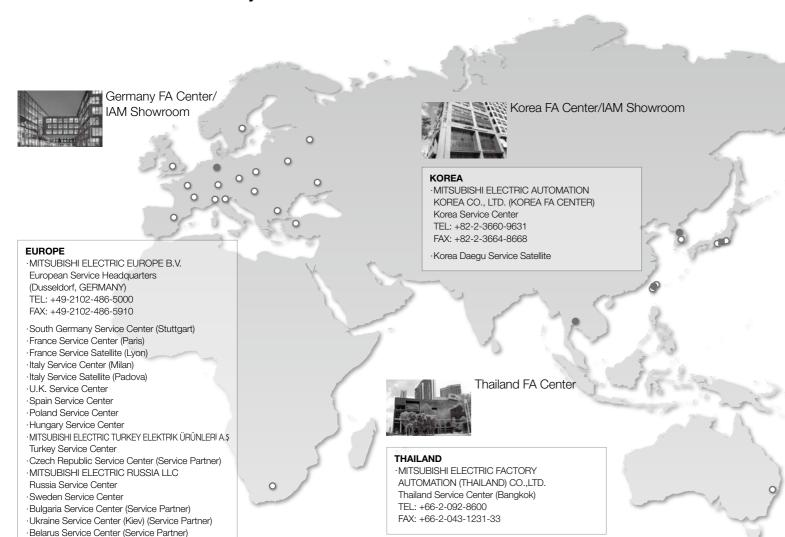
Servo parameters can be adjusted automatically by measuring and analyzing machine characteristics. Measurement and analysis can be done by running a servo motor using the machining program for adjustment, or using the vibration signal. This function can sample various types of data.

Operation and maintenance

Application development support

MITSUBISHI ELECTRIC AUTOMATION INC.

Central Region Service Center (Chicago)


North America FA Center

· Minneapolis, MN Service Satellite

GLOBAL SALES & SERVICE NETWORK

Providing reliable services in regions around the world

- our Best Partner commitment to you

Industrial Mechatronics Systems Works/ Nagoya Works

MITSUBISHI ELECTRIC CORPORATION (TOKYO HEAD OFFICE, INDUSTRIAL MECHATRONICS SYSTEMS WORKS/ NAGOYA WORKS) · MITSUBISHI ELECTRIC MECHATRONICS ENGINEERING CORPORATION (Headquarters) TEL: +81-52-722-6620 FAX: +81-52-722-6662

Taichung FA Center

TAIWAN

·MITSUBISHI ELECTRIC TAIWAN CO., LTD. (TAIWAN FA CENTER)

Taiwan Taichung Service Center TEL: +886-4-2359-0688 FAX: +886-4-2359-0689

Taiwan Taipei Service Center Taiwan Tainan Service Center

OCEANIA

·MITSUBISHI ELECTRIC AUSTRALIA PTY. LTD. Oceania Service Center

TEL: +61-2-9684-7269 FAX: +61-2-9684-7245

Brazil Votorantim FA Center

·MITSUBISHI ELECTRIC DO BRASIL COMÉRCIO E SERVICOS LTDA.

Votorantim Office TEL: +55-15-3023-9000

AMERICA

(AMERICA FA CENTER)

TEL: +1-847-478-2500

FAX: +1-847-478-2650

·Blumenau Santa Catarina office

(Georgia)

·Charleston, SC Service Satellite Charlotte, NC Service Satellite Raleigh, NC Service Satellite · Dallas. TX Service Satellite · Houston TX Service Satellite · Hartford, CT Service Satellite ·Knoxville, TN Service Satellite · Nashville, TN Service Satellite · Baltimore. MD Service Satellite Pittsburg, PA Service Satellite Tampa, FL Service Satellite Syracuse, NY Service Satellite ·Orlando, FL Service Satellite ·Lafavette LA Service Satellite · Philadelphia. PA Service Satellite

·Seattle, WA Service Satellite · Denver, CO Service Satellite · Canada Region Service Center · Edmonton, AB Service Satellite · Montreal, QC Service Satellite · Mexico Region Service Center

·Western Region Service Center

·San Jose, CA Service Satellite

(California)

(Queretaro) · Monterrey, NL Service Satellite

· Mexico City DF Service Satellite

ndia CNC Technical Center

South Africa Service Center (Service Partner)

·MITSUBISHI ELECTRIC INDIA PVT., LTD. CNC Technical Center (Bangalore) TEL: +91-80-4655-2121

FAX: +91-80-4655-2147

·Chennai Service Satellite ·Coimbatore Service Satellite · Hvderabad Service Satellite North India Service Center (Gurgaon)

·Ludhiana Service Satellite ·Panthnagar Service Satellite

 Delhi Service Satellite · Jamshedpur Service Satellite

· Manesar Service Satellite ·West India Service Center (Pune)

Kolhanur Service Satellite

 Aurangabad Service Satellite · Mumbai Service Satellite West India Service Center (Ahmedabad) Rajkot Service Satellite

ASEAN FA Center/ AM Showroom

ASEAN

·MITSUBISHI ELECTRIC ASIA PTE. LTD. (ASEAN FA CENTER)

Singapore Service Center TEL: +65-6473-2308 FAX: +65-6476-7439

INDONESIA

·PT. MITSUBISHI ELECTRIC INDONESIA Indonesia Service Center (Cikarang) TEL: +62-21-2961-7797 FAX: +62-21-2961-7794

·MITSUBISHI ELECTRIC VIETNAM CO..LTD. Vietnam Ho Chi Minh Service Center

TEL: +84-28-3910 5945 FAX: +84-28-3910 5947 ·Vietnam Hanoi Service Center

MALAYSIA

·MITSUBISHI ELECTRIC SALES MALAYSIA SDN. BHD. Malaysia Service Center (Kuala Lumpur Service Center) TEL: +60-3-7626-5032

FAX: +60-3-7960-2629 · Johor Bahru Service Satellite ·Pulau Pinang Service Satellite

PHILIPPINES

·MELCO FACTORY AUTOMATION PHILIPPINES INC. Head Office

TEL: +63-2-8256-8042 FAX: +632-8637-2294 Philippines Service Center

MITSUBISHI ELECTRIC AUTOMATION MANUFACTURING (Changshu) Co., LTD.

Shanghai FA Center/

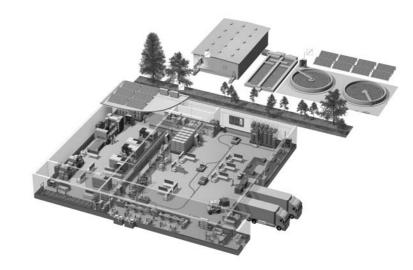
·MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. (CHINA FA CENTER) Shanghai Service Center TEL: +86-21-2322-3030 FAX: +86-21-2322-3000*8422

· Qingdao Service Center ·Suzhou Service Center ·Wuhan Service Center ·Ningbo Service Center ·Hefei Service Center ·Beijing Service Center ·Tianjin Service Center ·Xian Service Center ·Dalian Service Center ·Chengdu Service Center ·Shenzhen Service Center Dongguan Service Center ·Xiamen Service Center

GLOBAL

SALES

Qο


SERVICE

NETWORK

■MEMO

YOUR SOLUTION **PARTNER**

Mitsubishi Electric offers a wide range of automation equipment from PLCs and HMIs to CNC and EDM machines.

This is why you can rely on Mitsubishi

Electric automation solution - because

we know first hand about the need for

reliable, efficient, easy-to-use automation

As one of the world's leading compan-

ies with a global turnover of over 4 trillion

Yen (over \$40 billion), employing over 146,000 people, Mitsubishi Electric has

the resource and the commitment to

deliver the ultimate in service and support

as well as the best products.

and control in our own factories.

Fransformers, Med-voltage Distribution Products

Power Monitoring and Energy Saving Products

Power (UPS) and Environmental Products

*Trademarks

MELSEC, EZSocket, iQ Platform, MELSEC iQ-R, GOT, CC-Link, CC-Link/LT, CC-Link IE, CC-Link IE Field, EcoMonitorLight and SLMP are either trademarks or registered trademarks of Mitsubishi Electric Corporation in Japan and/or other countries.

Ethernet is a registered trademark of Xerox Corporation in the United States and/or other countries. Microsoft® and Windows® are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. SD logo and SDHC logo are either registered trademarks or trademarks of LLC. EtherNet/IP is a trademark of Open DeviceNet Vendor Association,Inc.

PROFIBUS-DP is a trademark of Profibus International.

VNC is a registered trademark of RealVNC Ltd. in the United States and other countries.

Other company and product names that appear in this manual are trademarks or registered trademarks of the respective companies.

A NAME TO TRUST

commerce and industry.

premium quality.

Since its beginnings in 1870, some 45

companies use the Mitsubishi name,

covering a spectrum of finance,

The Mitsubishi brand name is recognized

around the world as a symbol of

Mitsubishi Electric Corporation, estab-

lished in 1921, is active in space

development, transportation, semi-con-

ductors, energy systems, communications and information processing, audio visual equipment and home electronics, building and energy management and automation systems, and has 183 factories, laboratories and offices worldwide in over 140 countries.

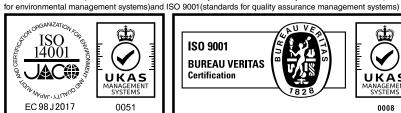
Global Partner, Local Friend.

Official Mitsubishi Electric Mechatronics YouTube account

User support videos will be available, including how to backup/restore data and replace batteries as well as introduction to our products and technologies.

[Facebook logo] is a trademark or a registered trademark of Facebook, inc. [LinkedIn logo] is a trademark or a registered trademark of LinkedIn logo] is a trademark or a registered trademark of LinkedIn logo].

Official Mitsubishi Electric CNC Facebook/LinkedIn account


Visit our page for information about exhibitions, products, technologies, and FAQ.

Mitsubishi Electric Corporation Industrial Mechatronics Systems Works is a factory certified for ISO 14001(standards

⚠ Safety Warning

To ensure proper use of the products listed in this catalog, please be sure to read the instruction manual prior to use.

MITSUBISHI ELECTRIC CORPORATION HEAD OFFICE: TOKYO BLDG., 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN